381 lines
15 KiB
C++
381 lines
15 KiB
C++
// Ceres Solver - A fast non-linear least squares minimizer
|
|
// Copyright 2015 Google Inc. All rights reserved.
|
|
// http://ceres-solver.org/
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
// * Neither the name of Google Inc. nor the names of its contributors may be
|
|
// used to endorse or promote products derived from this software without
|
|
// specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
|
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
// POSSIBILITY OF SUCH DAMAGE.
|
|
//
|
|
// Author: sameeragarwal@google.com (Sameer Agarwal)
|
|
|
|
#include "ceres/partitioned_matrix_view.h"
|
|
|
|
#include <algorithm>
|
|
#include <cstring>
|
|
#include <vector>
|
|
#include "ceres/block_sparse_matrix.h"
|
|
#include "ceres/block_structure.h"
|
|
#include "ceres/internal/eigen.h"
|
|
#include "ceres/small_blas.h"
|
|
#include "glog/logging.h"
|
|
|
|
namespace ceres {
|
|
namespace internal {
|
|
|
|
template <int kRowBlockSize, int kEBlockSize, int kFBlockSize>
|
|
PartitionedMatrixView<kRowBlockSize, kEBlockSize, kFBlockSize>::
|
|
PartitionedMatrixView(
|
|
const BlockSparseMatrix& matrix,
|
|
int num_col_blocks_e)
|
|
: matrix_(matrix),
|
|
num_col_blocks_e_(num_col_blocks_e) {
|
|
const CompressedRowBlockStructure* bs = matrix_.block_structure();
|
|
CHECK_NOTNULL(bs);
|
|
|
|
num_col_blocks_f_ = bs->cols.size() - num_col_blocks_e_;
|
|
|
|
// Compute the number of row blocks in E. The number of row blocks
|
|
// in E maybe less than the number of row blocks in the input matrix
|
|
// as some of the row blocks at the bottom may not have any
|
|
// e_blocks. For a definition of what an e_block is, please see
|
|
// explicit_schur_complement_solver.h
|
|
num_row_blocks_e_ = 0;
|
|
for (int r = 0; r < bs->rows.size(); ++r) {
|
|
const std::vector<Cell>& cells = bs->rows[r].cells;
|
|
if (cells[0].block_id < num_col_blocks_e_) {
|
|
++num_row_blocks_e_;
|
|
}
|
|
}
|
|
|
|
// Compute the number of columns in E and F.
|
|
num_cols_e_ = 0;
|
|
num_cols_f_ = 0;
|
|
|
|
for (int c = 0; c < bs->cols.size(); ++c) {
|
|
const Block& block = bs->cols[c];
|
|
if (c < num_col_blocks_e_) {
|
|
num_cols_e_ += block.size;
|
|
} else {
|
|
num_cols_f_ += block.size;
|
|
}
|
|
}
|
|
|
|
CHECK_EQ(num_cols_e_ + num_cols_f_, matrix_.num_cols());
|
|
}
|
|
|
|
template <int kRowBlockSize, int kEBlockSize, int kFBlockSize>
|
|
PartitionedMatrixView<kRowBlockSize, kEBlockSize, kFBlockSize>::
|
|
~PartitionedMatrixView() {
|
|
}
|
|
|
|
// The next four methods don't seem to be particularly cache
|
|
// friendly. This is an artifact of how the BlockStructure of the
|
|
// input matrix is constructed. These methods will benefit from
|
|
// multithreading as well as improved data layout.
|
|
|
|
template <int kRowBlockSize, int kEBlockSize, int kFBlockSize>
|
|
void
|
|
PartitionedMatrixView<kRowBlockSize, kEBlockSize, kFBlockSize>::
|
|
RightMultiplyE(const double* x, double* y) const {
|
|
const CompressedRowBlockStructure* bs = matrix_.block_structure();
|
|
|
|
// Iterate over the first num_row_blocks_e_ row blocks, and multiply
|
|
// by the first cell in each row block.
|
|
const double* values = matrix_.values();
|
|
for (int r = 0; r < num_row_blocks_e_; ++r) {
|
|
const Cell& cell = bs->rows[r].cells[0];
|
|
const int row_block_pos = bs->rows[r].block.position;
|
|
const int row_block_size = bs->rows[r].block.size;
|
|
const int col_block_id = cell.block_id;
|
|
const int col_block_pos = bs->cols[col_block_id].position;
|
|
const int col_block_size = bs->cols[col_block_id].size;
|
|
MatrixVectorMultiply<kRowBlockSize, kEBlockSize, 1>(
|
|
values + cell.position, row_block_size, col_block_size,
|
|
x + col_block_pos,
|
|
y + row_block_pos);
|
|
}
|
|
}
|
|
|
|
template <int kRowBlockSize, int kEBlockSize, int kFBlockSize>
|
|
void
|
|
PartitionedMatrixView<kRowBlockSize, kEBlockSize, kFBlockSize>::
|
|
RightMultiplyF(const double* x, double* y) const {
|
|
const CompressedRowBlockStructure* bs = matrix_.block_structure();
|
|
|
|
// Iterate over row blocks, and if the row block is in E, then
|
|
// multiply by all the cells except the first one which is of type
|
|
// E. If the row block is not in E (i.e its in the bottom
|
|
// num_row_blocks - num_row_blocks_e row blocks), then all the cells
|
|
// are of type F and multiply by them all.
|
|
const double* values = matrix_.values();
|
|
for (int r = 0; r < num_row_blocks_e_; ++r) {
|
|
const int row_block_pos = bs->rows[r].block.position;
|
|
const int row_block_size = bs->rows[r].block.size;
|
|
const std::vector<Cell>& cells = bs->rows[r].cells;
|
|
for (int c = 1; c < cells.size(); ++c) {
|
|
const int col_block_id = cells[c].block_id;
|
|
const int col_block_pos = bs->cols[col_block_id].position;
|
|
const int col_block_size = bs->cols[col_block_id].size;
|
|
MatrixVectorMultiply<kRowBlockSize, kFBlockSize, 1>(
|
|
values + cells[c].position, row_block_size, col_block_size,
|
|
x + col_block_pos - num_cols_e_,
|
|
y + row_block_pos);
|
|
}
|
|
}
|
|
|
|
for (int r = num_row_blocks_e_; r < bs->rows.size(); ++r) {
|
|
const int row_block_pos = bs->rows[r].block.position;
|
|
const int row_block_size = bs->rows[r].block.size;
|
|
const std::vector<Cell>& cells = bs->rows[r].cells;
|
|
for (int c = 0; c < cells.size(); ++c) {
|
|
const int col_block_id = cells[c].block_id;
|
|
const int col_block_pos = bs->cols[col_block_id].position;
|
|
const int col_block_size = bs->cols[col_block_id].size;
|
|
MatrixVectorMultiply<Eigen::Dynamic, Eigen::Dynamic, 1>(
|
|
values + cells[c].position, row_block_size, col_block_size,
|
|
x + col_block_pos - num_cols_e_,
|
|
y + row_block_pos);
|
|
}
|
|
}
|
|
}
|
|
|
|
template <int kRowBlockSize, int kEBlockSize, int kFBlockSize>
|
|
void
|
|
PartitionedMatrixView<kRowBlockSize, kEBlockSize, kFBlockSize>::
|
|
LeftMultiplyE(const double* x, double* y) const {
|
|
const CompressedRowBlockStructure* bs = matrix_.block_structure();
|
|
|
|
// Iterate over the first num_row_blocks_e_ row blocks, and multiply
|
|
// by the first cell in each row block.
|
|
const double* values = matrix_.values();
|
|
for (int r = 0; r < num_row_blocks_e_; ++r) {
|
|
const Cell& cell = bs->rows[r].cells[0];
|
|
const int row_block_pos = bs->rows[r].block.position;
|
|
const int row_block_size = bs->rows[r].block.size;
|
|
const int col_block_id = cell.block_id;
|
|
const int col_block_pos = bs->cols[col_block_id].position;
|
|
const int col_block_size = bs->cols[col_block_id].size;
|
|
MatrixTransposeVectorMultiply<kRowBlockSize, kEBlockSize, 1>(
|
|
values + cell.position, row_block_size, col_block_size,
|
|
x + row_block_pos,
|
|
y + col_block_pos);
|
|
}
|
|
}
|
|
|
|
template <int kRowBlockSize, int kEBlockSize, int kFBlockSize>
|
|
void
|
|
PartitionedMatrixView<kRowBlockSize, kEBlockSize, kFBlockSize>::
|
|
LeftMultiplyF(const double* x, double* y) const {
|
|
const CompressedRowBlockStructure* bs = matrix_.block_structure();
|
|
|
|
// Iterate over row blocks, and if the row block is in E, then
|
|
// multiply by all the cells except the first one which is of type
|
|
// E. If the row block is not in E (i.e its in the bottom
|
|
// num_row_blocks - num_row_blocks_e row blocks), then all the cells
|
|
// are of type F and multiply by them all.
|
|
const double* values = matrix_.values();
|
|
for (int r = 0; r < num_row_blocks_e_; ++r) {
|
|
const int row_block_pos = bs->rows[r].block.position;
|
|
const int row_block_size = bs->rows[r].block.size;
|
|
const std::vector<Cell>& cells = bs->rows[r].cells;
|
|
for (int c = 1; c < cells.size(); ++c) {
|
|
const int col_block_id = cells[c].block_id;
|
|
const int col_block_pos = bs->cols[col_block_id].position;
|
|
const int col_block_size = bs->cols[col_block_id].size;
|
|
MatrixTransposeVectorMultiply<kRowBlockSize, kFBlockSize, 1>(
|
|
values + cells[c].position, row_block_size, col_block_size,
|
|
x + row_block_pos,
|
|
y + col_block_pos - num_cols_e_);
|
|
}
|
|
}
|
|
|
|
for (int r = num_row_blocks_e_; r < bs->rows.size(); ++r) {
|
|
const int row_block_pos = bs->rows[r].block.position;
|
|
const int row_block_size = bs->rows[r].block.size;
|
|
const std::vector<Cell>& cells = bs->rows[r].cells;
|
|
for (int c = 0; c < cells.size(); ++c) {
|
|
const int col_block_id = cells[c].block_id;
|
|
const int col_block_pos = bs->cols[col_block_id].position;
|
|
const int col_block_size = bs->cols[col_block_id].size;
|
|
MatrixTransposeVectorMultiply<Eigen::Dynamic, Eigen::Dynamic, 1>(
|
|
values + cells[c].position, row_block_size, col_block_size,
|
|
x + row_block_pos,
|
|
y + col_block_pos - num_cols_e_);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Given a range of columns blocks of a matrix m, compute the block
|
|
// structure of the block diagonal of the matrix m(:,
|
|
// start_col_block:end_col_block)'m(:, start_col_block:end_col_block)
|
|
// and return a BlockSparseMatrix with the this block structure. The
|
|
// caller owns the result.
|
|
template <int kRowBlockSize, int kEBlockSize, int kFBlockSize>
|
|
BlockSparseMatrix*
|
|
PartitionedMatrixView<kRowBlockSize, kEBlockSize, kFBlockSize>::
|
|
CreateBlockDiagonalMatrixLayout(int start_col_block, int end_col_block) const {
|
|
const CompressedRowBlockStructure* bs = matrix_.block_structure();
|
|
CompressedRowBlockStructure* block_diagonal_structure =
|
|
new CompressedRowBlockStructure;
|
|
|
|
int block_position = 0;
|
|
int diagonal_cell_position = 0;
|
|
|
|
// Iterate over the column blocks, creating a new diagonal block for
|
|
// each column block.
|
|
for (int c = start_col_block; c < end_col_block; ++c) {
|
|
const Block& block = bs->cols[c];
|
|
block_diagonal_structure->cols.push_back(Block());
|
|
Block& diagonal_block = block_diagonal_structure->cols.back();
|
|
diagonal_block.size = block.size;
|
|
diagonal_block.position = block_position;
|
|
|
|
block_diagonal_structure->rows.push_back(CompressedRow());
|
|
CompressedRow& row = block_diagonal_structure->rows.back();
|
|
row.block = diagonal_block;
|
|
|
|
row.cells.push_back(Cell());
|
|
Cell& cell = row.cells.back();
|
|
cell.block_id = c - start_col_block;
|
|
cell.position = diagonal_cell_position;
|
|
|
|
block_position += block.size;
|
|
diagonal_cell_position += block.size * block.size;
|
|
}
|
|
|
|
// Build a BlockSparseMatrix with the just computed block
|
|
// structure.
|
|
return new BlockSparseMatrix(block_diagonal_structure);
|
|
}
|
|
|
|
template <int kRowBlockSize, int kEBlockSize, int kFBlockSize>
|
|
BlockSparseMatrix*
|
|
PartitionedMatrixView<kRowBlockSize, kEBlockSize, kFBlockSize>::
|
|
CreateBlockDiagonalEtE() const {
|
|
BlockSparseMatrix* block_diagonal =
|
|
CreateBlockDiagonalMatrixLayout(0, num_col_blocks_e_);
|
|
UpdateBlockDiagonalEtE(block_diagonal);
|
|
return block_diagonal;
|
|
}
|
|
|
|
template <int kRowBlockSize, int kEBlockSize, int kFBlockSize>
|
|
BlockSparseMatrix*
|
|
PartitionedMatrixView<kRowBlockSize, kEBlockSize, kFBlockSize>::
|
|
CreateBlockDiagonalFtF() const {
|
|
BlockSparseMatrix* block_diagonal =
|
|
CreateBlockDiagonalMatrixLayout(
|
|
num_col_blocks_e_, num_col_blocks_e_ + num_col_blocks_f_);
|
|
UpdateBlockDiagonalFtF(block_diagonal);
|
|
return block_diagonal;
|
|
}
|
|
|
|
// Similar to the code in RightMultiplyE, except instead of the matrix
|
|
// vector multiply its an outer product.
|
|
//
|
|
// block_diagonal = block_diagonal(E'E)
|
|
//
|
|
template <int kRowBlockSize, int kEBlockSize, int kFBlockSize>
|
|
void
|
|
PartitionedMatrixView<kRowBlockSize, kEBlockSize, kFBlockSize>::
|
|
UpdateBlockDiagonalEtE(
|
|
BlockSparseMatrix* block_diagonal) const {
|
|
const CompressedRowBlockStructure* bs = matrix_.block_structure();
|
|
const CompressedRowBlockStructure* block_diagonal_structure =
|
|
block_diagonal->block_structure();
|
|
|
|
block_diagonal->SetZero();
|
|
const double* values = matrix_.values();
|
|
for (int r = 0; r < num_row_blocks_e_ ; ++r) {
|
|
const Cell& cell = bs->rows[r].cells[0];
|
|
const int row_block_size = bs->rows[r].block.size;
|
|
const int block_id = cell.block_id;
|
|
const int col_block_size = bs->cols[block_id].size;
|
|
const int cell_position =
|
|
block_diagonal_structure->rows[block_id].cells[0].position;
|
|
|
|
MatrixTransposeMatrixMultiply
|
|
<kRowBlockSize, kEBlockSize, kRowBlockSize, kEBlockSize, 1>(
|
|
values + cell.position, row_block_size, col_block_size,
|
|
values + cell.position, row_block_size, col_block_size,
|
|
block_diagonal->mutable_values() + cell_position,
|
|
0, 0, col_block_size, col_block_size);
|
|
}
|
|
}
|
|
|
|
// Similar to the code in RightMultiplyF, except instead of the matrix
|
|
// vector multiply its an outer product.
|
|
//
|
|
// block_diagonal = block_diagonal(F'F)
|
|
//
|
|
template <int kRowBlockSize, int kEBlockSize, int kFBlockSize>
|
|
void
|
|
PartitionedMatrixView<kRowBlockSize, kEBlockSize, kFBlockSize>::
|
|
UpdateBlockDiagonalFtF(BlockSparseMatrix* block_diagonal) const {
|
|
const CompressedRowBlockStructure* bs = matrix_.block_structure();
|
|
const CompressedRowBlockStructure* block_diagonal_structure =
|
|
block_diagonal->block_structure();
|
|
|
|
block_diagonal->SetZero();
|
|
const double* values = matrix_.values();
|
|
for (int r = 0; r < num_row_blocks_e_; ++r) {
|
|
const int row_block_size = bs->rows[r].block.size;
|
|
const std::vector<Cell>& cells = bs->rows[r].cells;
|
|
for (int c = 1; c < cells.size(); ++c) {
|
|
const int col_block_id = cells[c].block_id;
|
|
const int col_block_size = bs->cols[col_block_id].size;
|
|
const int diagonal_block_id = col_block_id - num_col_blocks_e_;
|
|
const int cell_position =
|
|
block_diagonal_structure->rows[diagonal_block_id].cells[0].position;
|
|
|
|
MatrixTransposeMatrixMultiply
|
|
<kRowBlockSize, kFBlockSize, kRowBlockSize, kFBlockSize, 1>(
|
|
values + cells[c].position, row_block_size, col_block_size,
|
|
values + cells[c].position, row_block_size, col_block_size,
|
|
block_diagonal->mutable_values() + cell_position,
|
|
0, 0, col_block_size, col_block_size);
|
|
}
|
|
}
|
|
|
|
for (int r = num_row_blocks_e_; r < bs->rows.size(); ++r) {
|
|
const int row_block_size = bs->rows[r].block.size;
|
|
const std::vector<Cell>& cells = bs->rows[r].cells;
|
|
for (int c = 0; c < cells.size(); ++c) {
|
|
const int col_block_id = cells[c].block_id;
|
|
const int col_block_size = bs->cols[col_block_id].size;
|
|
const int diagonal_block_id = col_block_id - num_col_blocks_e_;
|
|
const int cell_position =
|
|
block_diagonal_structure->rows[diagonal_block_id].cells[0].position;
|
|
|
|
MatrixTransposeMatrixMultiply
|
|
<Eigen::Dynamic, Eigen::Dynamic, Eigen::Dynamic, Eigen::Dynamic, 1>(
|
|
values + cells[c].position, row_block_size, col_block_size,
|
|
values + cells[c].position, row_block_size, col_block_size,
|
|
block_diagonal->mutable_values() + cell_position,
|
|
0, 0, col_block_size, col_block_size);
|
|
}
|
|
}
|
|
}
|
|
|
|
} // namespace internal
|
|
} // namespace ceres
|