255 lines
9.1 KiB
C++
255 lines
9.1 KiB
C++
// Ceres Solver - A fast non-linear least squares minimizer
|
|
// Copyright 2015 Google Inc. All rights reserved.
|
|
// http://ceres-solver.org/
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
// * Neither the name of Google Inc. nor the names of its contributors may be
|
|
// used to endorse or promote products derived from this software without
|
|
// specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
|
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
// POSSIBILITY OF SUCH DAMAGE.
|
|
//
|
|
// Author: sameeragarwal@google.com (Sameer Agarwal)
|
|
|
|
#include "ceres/reorder_program.h"
|
|
|
|
#include "ceres/parameter_block.h"
|
|
#include "ceres/problem_impl.h"
|
|
#include "ceres/program.h"
|
|
#include "ceres/sized_cost_function.h"
|
|
#include "ceres/solver.h"
|
|
|
|
#include "gmock/gmock.h"
|
|
#include "gtest/gtest.h"
|
|
|
|
namespace ceres {
|
|
namespace internal {
|
|
|
|
using std::vector;
|
|
|
|
// Templated base class for the CostFunction signatures.
|
|
template <int kNumResiduals, int N0, int N1, int N2>
|
|
class MockCostFunctionBase : public
|
|
SizedCostFunction<kNumResiduals, N0, N1, N2> {
|
|
public:
|
|
virtual bool Evaluate(double const* const* parameters,
|
|
double* residuals,
|
|
double** jacobians) const {
|
|
// Do nothing. This is never called.
|
|
return true;
|
|
}
|
|
};
|
|
|
|
class UnaryCostFunction : public MockCostFunctionBase<2, 1, 0, 0> {};
|
|
class BinaryCostFunction : public MockCostFunctionBase<2, 1, 1, 0> {};
|
|
class TernaryCostFunction : public MockCostFunctionBase<2, 1, 1, 1> {};
|
|
|
|
TEST(_, ReorderResidualBlockNormalFunction) {
|
|
ProblemImpl problem;
|
|
double x;
|
|
double y;
|
|
double z;
|
|
|
|
problem.AddParameterBlock(&x, 1);
|
|
problem.AddParameterBlock(&y, 1);
|
|
problem.AddParameterBlock(&z, 1);
|
|
|
|
problem.AddResidualBlock(new UnaryCostFunction(), NULL, &x);
|
|
problem.AddResidualBlock(new BinaryCostFunction(), NULL, &z, &x);
|
|
problem.AddResidualBlock(new BinaryCostFunction(), NULL, &z, &y);
|
|
problem.AddResidualBlock(new UnaryCostFunction(), NULL, &z);
|
|
problem.AddResidualBlock(new BinaryCostFunction(), NULL, &x, &y);
|
|
problem.AddResidualBlock(new UnaryCostFunction(), NULL, &y);
|
|
|
|
ParameterBlockOrdering* linear_solver_ordering = new ParameterBlockOrdering;
|
|
linear_solver_ordering->AddElementToGroup(&x, 0);
|
|
linear_solver_ordering->AddElementToGroup(&y, 0);
|
|
linear_solver_ordering->AddElementToGroup(&z, 1);
|
|
|
|
Solver::Options options;
|
|
options.linear_solver_type = DENSE_SCHUR;
|
|
options.linear_solver_ordering.reset(linear_solver_ordering);
|
|
|
|
const vector<ResidualBlock*>& residual_blocks =
|
|
problem.program().residual_blocks();
|
|
|
|
vector<ResidualBlock*> expected_residual_blocks;
|
|
|
|
// This is a bit fragile, but it serves the purpose. We know the
|
|
// bucketing algorithm that the reordering function uses, so we
|
|
// expect the order for residual blocks for each e_block to be
|
|
// filled in reverse.
|
|
expected_residual_blocks.push_back(residual_blocks[4]);
|
|
expected_residual_blocks.push_back(residual_blocks[1]);
|
|
expected_residual_blocks.push_back(residual_blocks[0]);
|
|
expected_residual_blocks.push_back(residual_blocks[5]);
|
|
expected_residual_blocks.push_back(residual_blocks[2]);
|
|
expected_residual_blocks.push_back(residual_blocks[3]);
|
|
|
|
Program* program = problem.mutable_program();
|
|
program->SetParameterOffsetsAndIndex();
|
|
|
|
std::string message;
|
|
EXPECT_TRUE(LexicographicallyOrderResidualBlocks(
|
|
2,
|
|
problem.mutable_program(),
|
|
&message));
|
|
EXPECT_EQ(residual_blocks.size(), expected_residual_blocks.size());
|
|
for (int i = 0; i < expected_residual_blocks.size(); ++i) {
|
|
EXPECT_EQ(residual_blocks[i], expected_residual_blocks[i]);
|
|
}
|
|
}
|
|
|
|
TEST(_, ApplyOrderingOrderingTooSmall) {
|
|
ProblemImpl problem;
|
|
double x;
|
|
double y;
|
|
double z;
|
|
|
|
problem.AddParameterBlock(&x, 1);
|
|
problem.AddParameterBlock(&y, 1);
|
|
problem.AddParameterBlock(&z, 1);
|
|
|
|
ParameterBlockOrdering linear_solver_ordering;
|
|
linear_solver_ordering.AddElementToGroup(&x, 0);
|
|
linear_solver_ordering.AddElementToGroup(&y, 1);
|
|
|
|
Program program(problem.program());
|
|
std::string message;
|
|
EXPECT_FALSE(ApplyOrdering(problem.parameter_map(),
|
|
linear_solver_ordering,
|
|
&program,
|
|
&message));
|
|
}
|
|
|
|
TEST(_, ApplyOrderingNormal) {
|
|
ProblemImpl problem;
|
|
double x;
|
|
double y;
|
|
double z;
|
|
|
|
problem.AddParameterBlock(&x, 1);
|
|
problem.AddParameterBlock(&y, 1);
|
|
problem.AddParameterBlock(&z, 1);
|
|
|
|
ParameterBlockOrdering linear_solver_ordering;
|
|
linear_solver_ordering.AddElementToGroup(&x, 0);
|
|
linear_solver_ordering.AddElementToGroup(&y, 2);
|
|
linear_solver_ordering.AddElementToGroup(&z, 1);
|
|
|
|
Program* program = problem.mutable_program();
|
|
std::string message;
|
|
|
|
EXPECT_TRUE(ApplyOrdering(problem.parameter_map(),
|
|
linear_solver_ordering,
|
|
program,
|
|
&message));
|
|
const vector<ParameterBlock*>& parameter_blocks = program->parameter_blocks();
|
|
|
|
EXPECT_EQ(parameter_blocks.size(), 3);
|
|
EXPECT_EQ(parameter_blocks[0]->user_state(), &x);
|
|
EXPECT_EQ(parameter_blocks[1]->user_state(), &z);
|
|
EXPECT_EQ(parameter_blocks[2]->user_state(), &y);
|
|
}
|
|
|
|
#ifndef CERES_NO_SUITESPARSE
|
|
class ReorderProgramForSparseNormalCholeskyUsingSuiteSparseTest :
|
|
public ::testing::Test {
|
|
protected:
|
|
void SetUp() {
|
|
problem_.AddResidualBlock(new UnaryCostFunction(), NULL, &x_);
|
|
problem_.AddResidualBlock(new BinaryCostFunction(), NULL, &z_, &x_);
|
|
problem_.AddResidualBlock(new BinaryCostFunction(), NULL, &z_, &y_);
|
|
problem_.AddResidualBlock(new UnaryCostFunction(), NULL, &z_);
|
|
problem_.AddResidualBlock(new BinaryCostFunction(), NULL, &x_, &y_);
|
|
problem_.AddResidualBlock(new UnaryCostFunction(), NULL, &y_);
|
|
}
|
|
|
|
void ComputeAndValidateOrdering(
|
|
const ParameterBlockOrdering& linear_solver_ordering) {
|
|
Program* program = problem_.mutable_program();
|
|
vector<ParameterBlock*> unordered_parameter_blocks =
|
|
program->parameter_blocks();
|
|
|
|
std::string error;
|
|
EXPECT_TRUE(ReorderProgramForSparseNormalCholesky(
|
|
ceres::SUITE_SPARSE,
|
|
linear_solver_ordering,
|
|
program,
|
|
&error));
|
|
const vector<ParameterBlock*>& ordered_parameter_blocks =
|
|
program->parameter_blocks();
|
|
EXPECT_EQ(ordered_parameter_blocks.size(),
|
|
unordered_parameter_blocks.size());
|
|
|
|
EXPECT_THAT(unordered_parameter_blocks,
|
|
::testing::UnorderedElementsAreArray(ordered_parameter_blocks));
|
|
}
|
|
|
|
ProblemImpl problem_;
|
|
double x_;
|
|
double y_;
|
|
double z_;
|
|
};
|
|
|
|
TEST_F(ReorderProgramForSparseNormalCholeskyUsingSuiteSparseTest,
|
|
EverythingInGroupZero) {
|
|
ParameterBlockOrdering linear_solver_ordering;
|
|
linear_solver_ordering.AddElementToGroup(&x_, 0);
|
|
linear_solver_ordering.AddElementToGroup(&y_, 0);
|
|
linear_solver_ordering.AddElementToGroup(&z_, 0);
|
|
|
|
ComputeAndValidateOrdering(linear_solver_ordering);
|
|
}
|
|
|
|
TEST_F(ReorderProgramForSparseNormalCholeskyUsingSuiteSparseTest,
|
|
ContiguousGroups) {
|
|
ParameterBlockOrdering linear_solver_ordering;
|
|
linear_solver_ordering.AddElementToGroup(&x_, 0);
|
|
linear_solver_ordering.AddElementToGroup(&y_, 1);
|
|
linear_solver_ordering.AddElementToGroup(&z_, 2);
|
|
|
|
ComputeAndValidateOrdering(linear_solver_ordering);
|
|
}
|
|
|
|
TEST_F(ReorderProgramForSparseNormalCholeskyUsingSuiteSparseTest,
|
|
GroupsWithGaps) {
|
|
ParameterBlockOrdering linear_solver_ordering;
|
|
linear_solver_ordering.AddElementToGroup(&x_, 0);
|
|
linear_solver_ordering.AddElementToGroup(&y_, 2);
|
|
linear_solver_ordering.AddElementToGroup(&z_, 2);
|
|
|
|
ComputeAndValidateOrdering(linear_solver_ordering);
|
|
}
|
|
|
|
TEST_F(ReorderProgramForSparseNormalCholeskyUsingSuiteSparseTest,
|
|
NonContiguousStartingAtTwo) {
|
|
ParameterBlockOrdering linear_solver_ordering;
|
|
linear_solver_ordering.AddElementToGroup(&x_, 2);
|
|
linear_solver_ordering.AddElementToGroup(&y_, 4);
|
|
linear_solver_ordering.AddElementToGroup(&z_, 4);
|
|
|
|
ComputeAndValidateOrdering(linear_solver_ordering);
|
|
}
|
|
#endif // CERES_NO_SUITESPARSE
|
|
|
|
} // namespace internal
|
|
} // namespace ceres
|