175 lines
5.5 KiB
C++
175 lines
5.5 KiB
C++
// Ceres Solver - A fast non-linear least squares minimizer
|
|
// Copyright 2015 Google Inc. All rights reserved.
|
|
// http://ceres-solver.org/
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
// * Neither the name of Google Inc. nor the names of its contributors may be
|
|
// used to endorse or promote products derived from this software without
|
|
// specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
|
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
// POSSIBILITY OF SUCH DAMAGE.
|
|
//
|
|
// Author: sameeragarwal@google.com (Sameer Agarwal)
|
|
//
|
|
// Purpose: See .h file.
|
|
|
|
#include "ceres/loss_function.h"
|
|
|
|
#include <cmath>
|
|
#include <cstddef>
|
|
#include <limits>
|
|
|
|
namespace ceres {
|
|
|
|
void TrivialLoss::Evaluate(double s, double rho[3]) const {
|
|
rho[0] = s;
|
|
rho[1] = 1.0;
|
|
rho[2] = 0.0;
|
|
}
|
|
|
|
void HuberLoss::Evaluate(double s, double rho[3]) const {
|
|
if (s > b_) {
|
|
// Outlier region.
|
|
// 'r' is always positive.
|
|
const double r = sqrt(s);
|
|
rho[0] = 2.0 * a_ * r - b_;
|
|
rho[1] = std::max(std::numeric_limits<double>::min(), a_ / r);
|
|
rho[2] = - rho[1] / (2.0 * s);
|
|
} else {
|
|
// Inlier region.
|
|
rho[0] = s;
|
|
rho[1] = 1.0;
|
|
rho[2] = 0.0;
|
|
}
|
|
}
|
|
|
|
void SoftLOneLoss::Evaluate(double s, double rho[3]) const {
|
|
const double sum = 1.0 + s * c_;
|
|
const double tmp = sqrt(sum);
|
|
// 'sum' and 'tmp' are always positive, assuming that 's' is.
|
|
rho[0] = 2.0 * b_ * (tmp - 1.0);
|
|
rho[1] = std::max(std::numeric_limits<double>::min(), 1.0 / tmp);
|
|
rho[2] = - (c_ * rho[1]) / (2.0 * sum);
|
|
}
|
|
|
|
void CauchyLoss::Evaluate(double s, double rho[3]) const {
|
|
const double sum = 1.0 + s * c_;
|
|
const double inv = 1.0 / sum;
|
|
// 'sum' and 'inv' are always positive, assuming that 's' is.
|
|
rho[0] = b_ * log(sum);
|
|
rho[1] = std::max(std::numeric_limits<double>::min(), inv);
|
|
rho[2] = - c_ * (inv * inv);
|
|
}
|
|
|
|
void ArctanLoss::Evaluate(double s, double rho[3]) const {
|
|
const double sum = 1 + s * s * b_;
|
|
const double inv = 1 / sum;
|
|
// 'sum' and 'inv' are always positive.
|
|
rho[0] = a_ * atan2(s, a_);
|
|
rho[1] = std::max(std::numeric_limits<double>::min(), inv);
|
|
rho[2] = -2.0 * s * b_ * (inv * inv);
|
|
}
|
|
|
|
TolerantLoss::TolerantLoss(double a, double b)
|
|
: a_(a),
|
|
b_(b),
|
|
c_(b * log(1.0 + exp(-a / b))) {
|
|
CHECK_GE(a, 0.0);
|
|
CHECK_GT(b, 0.0);
|
|
}
|
|
|
|
void TolerantLoss::Evaluate(double s, double rho[3]) const {
|
|
const double x = (s - a_) / b_;
|
|
// The basic equation is rho[0] = b ln(1 + e^x). However, if e^x is too
|
|
// large, it will overflow. Since numerically 1 + e^x == e^x when the
|
|
// x is greater than about ln(2^53) for doubles, beyond this threshold
|
|
// we substitute x for ln(1 + e^x) as a numerically equivalent approximation.
|
|
static const double kLog2Pow53 = 36.7; // ln(MathLimits<double>::kEpsilon).
|
|
if (x > kLog2Pow53) {
|
|
rho[0] = s - a_ - c_;
|
|
rho[1] = 1.0;
|
|
rho[2] = 0.0;
|
|
} else {
|
|
const double e_x = exp(x);
|
|
rho[0] = b_ * log(1.0 + e_x) - c_;
|
|
rho[1] = std::max(std::numeric_limits<double>::min(), e_x / (1.0 + e_x));
|
|
rho[2] = 0.5 / (b_ * (1.0 + cosh(x)));
|
|
}
|
|
}
|
|
|
|
void TukeyLoss::Evaluate(double s, double* rho) const {
|
|
if (s <= a_squared_) {
|
|
// Inlier region.
|
|
const double value = 1.0 - s / a_squared_;
|
|
const double value_sq = value * value;
|
|
rho[0] = a_squared_ / 6.0 * (1.0 - value_sq * value);
|
|
rho[1] = 0.5 * value_sq;
|
|
rho[2] = -1.0 / a_squared_ * value;
|
|
} else {
|
|
// Outlier region.
|
|
rho[0] = a_squared_ / 6.0;
|
|
rho[1] = 0.0;
|
|
rho[2] = 0.0;
|
|
}
|
|
}
|
|
|
|
ComposedLoss::ComposedLoss(const LossFunction* f, Ownership ownership_f,
|
|
const LossFunction* g, Ownership ownership_g)
|
|
: f_(CHECK_NOTNULL(f)),
|
|
g_(CHECK_NOTNULL(g)),
|
|
ownership_f_(ownership_f),
|
|
ownership_g_(ownership_g) {
|
|
}
|
|
|
|
ComposedLoss::~ComposedLoss() {
|
|
if (ownership_f_ == DO_NOT_TAKE_OWNERSHIP) {
|
|
f_.release();
|
|
}
|
|
if (ownership_g_ == DO_NOT_TAKE_OWNERSHIP) {
|
|
g_.release();
|
|
}
|
|
}
|
|
|
|
void ComposedLoss::Evaluate(double s, double rho[3]) const {
|
|
double rho_f[3], rho_g[3];
|
|
g_->Evaluate(s, rho_g);
|
|
f_->Evaluate(rho_g[0], rho_f);
|
|
rho[0] = rho_f[0];
|
|
// f'(g(s)) * g'(s).
|
|
rho[1] = rho_f[1] * rho_g[1];
|
|
// f''(g(s)) * g'(s) * g'(s) + f'(g(s)) * g''(s).
|
|
rho[2] = rho_f[2] * rho_g[1] * rho_g[1] + rho_f[1] * rho_g[2];
|
|
}
|
|
|
|
void ScaledLoss::Evaluate(double s, double rho[3]) const {
|
|
if (rho_.get() == NULL) {
|
|
rho[0] = a_ * s;
|
|
rho[1] = a_;
|
|
rho[2] = 0.0;
|
|
} else {
|
|
rho_->Evaluate(s, rho);
|
|
rho[0] *= a_;
|
|
rho[1] *= a_;
|
|
rho[2] *= a_;
|
|
}
|
|
}
|
|
|
|
} // namespace ceres
|