1136 lines
35 KiB
C++
1136 lines
35 KiB
C++
// Ceres Solver - A fast non-linear least squares minimizer
|
|
// Copyright 2015 Google Inc. All rights reserved.
|
|
// http://ceres-solver.org/
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
// * Neither the name of Google Inc. nor the names of its contributors may be
|
|
// used to endorse or promote products derived from this software without
|
|
// specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
|
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
// POSSIBILITY OF SUCH DAMAGE.
|
|
//
|
|
// Author: sameeragarwal@google.com (Sameer Agarwal)
|
|
|
|
#include <cmath>
|
|
#include <limits>
|
|
#include <string>
|
|
#include "ceres/internal/eigen.h"
|
|
#include "ceres/internal/port.h"
|
|
#include "ceres/jet.h"
|
|
#include "ceres/rotation.h"
|
|
#include "ceres/stringprintf.h"
|
|
#include "ceres/test_util.h"
|
|
#include "glog/logging.h"
|
|
#include "gmock/gmock.h"
|
|
#include "gtest/gtest.h"
|
|
|
|
namespace ceres {
|
|
namespace internal {
|
|
|
|
using std::min;
|
|
using std::max;
|
|
using std::numeric_limits;
|
|
using std::string;
|
|
using std::swap;
|
|
|
|
const double kPi = 3.14159265358979323846;
|
|
const double kHalfSqrt2 = 0.707106781186547524401;
|
|
|
|
double RandDouble() {
|
|
double r = rand();
|
|
return r / RAND_MAX;
|
|
}
|
|
|
|
// A tolerance value for floating-point comparisons.
|
|
static double const kTolerance = numeric_limits<double>::epsilon() * 10;
|
|
|
|
// Looser tolerance used for numerically unstable conversions.
|
|
static double const kLooseTolerance = 1e-9;
|
|
|
|
// Use as:
|
|
// double quaternion[4];
|
|
// EXPECT_THAT(quaternion, IsNormalizedQuaternion());
|
|
MATCHER(IsNormalizedQuaternion, "") {
|
|
if (arg == NULL) {
|
|
*result_listener << "Null quaternion";
|
|
return false;
|
|
}
|
|
|
|
double norm2 = arg[0] * arg[0] + arg[1] * arg[1] +
|
|
arg[2] * arg[2] + arg[3] * arg[3];
|
|
if (fabs(norm2 - 1.0) > kTolerance) {
|
|
*result_listener << "squared norm is " << norm2;
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// Use as:
|
|
// double expected_quaternion[4];
|
|
// double actual_quaternion[4];
|
|
// EXPECT_THAT(actual_quaternion, IsNearQuaternion(expected_quaternion));
|
|
MATCHER_P(IsNearQuaternion, expected, "") {
|
|
if (arg == NULL) {
|
|
*result_listener << "Null quaternion";
|
|
return false;
|
|
}
|
|
|
|
// Quaternions are equivalent upto a sign change. So we will compare
|
|
// both signs before declaring failure.
|
|
bool near = true;
|
|
for (int i = 0; i < 4; i++) {
|
|
if (fabs(arg[i] - expected[i]) > kTolerance) {
|
|
near = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (near) {
|
|
return true;
|
|
}
|
|
|
|
near = true;
|
|
for (int i = 0; i < 4; i++) {
|
|
if (fabs(arg[i] + expected[i]) > kTolerance) {
|
|
near = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (near) {
|
|
return true;
|
|
}
|
|
|
|
*result_listener << "expected : "
|
|
<< expected[0] << " "
|
|
<< expected[1] << " "
|
|
<< expected[2] << " "
|
|
<< expected[3] << " "
|
|
<< "actual : "
|
|
<< arg[0] << " "
|
|
<< arg[1] << " "
|
|
<< arg[2] << " "
|
|
<< arg[3];
|
|
return false;
|
|
}
|
|
|
|
// Use as:
|
|
// double expected_axis_angle[3];
|
|
// double actual_axis_angle[3];
|
|
// EXPECT_THAT(actual_axis_angle, IsNearAngleAxis(expected_axis_angle));
|
|
MATCHER_P(IsNearAngleAxis, expected, "") {
|
|
if (arg == NULL) {
|
|
*result_listener << "Null axis/angle";
|
|
return false;
|
|
}
|
|
|
|
Eigen::Vector3d a(arg[0], arg[1], arg[2]);
|
|
Eigen::Vector3d e(expected[0], expected[1], expected[2]);
|
|
const double e_norm = e.norm();
|
|
|
|
double delta_norm = numeric_limits<double>::max();
|
|
if (e_norm > 0) {
|
|
// Deal with the sign ambiguity near PI. Since the sign can flip,
|
|
// we take the smaller of the two differences.
|
|
if (fabs(e_norm - kPi) < kLooseTolerance) {
|
|
delta_norm = min((a - e).norm(), (a + e).norm()) / e_norm;
|
|
} else {
|
|
delta_norm = (a - e).norm() / e_norm;
|
|
}
|
|
} else {
|
|
delta_norm = a.norm();
|
|
}
|
|
|
|
if (delta_norm <= kLooseTolerance) {
|
|
return true;
|
|
}
|
|
|
|
*result_listener << " arg:"
|
|
<< " " << arg[0]
|
|
<< " " << arg[1]
|
|
<< " " << arg[2]
|
|
<< " was expected to be:"
|
|
<< " " << expected[0]
|
|
<< " " << expected[1]
|
|
<< " " << expected[2];
|
|
return false;
|
|
}
|
|
|
|
// Use as:
|
|
// double matrix[9];
|
|
// EXPECT_THAT(matrix, IsOrthonormal());
|
|
MATCHER(IsOrthonormal, "") {
|
|
if (arg == NULL) {
|
|
*result_listener << "Null matrix";
|
|
return false;
|
|
}
|
|
|
|
for (int c1 = 0; c1 < 3; c1++) {
|
|
for (int c2 = 0; c2 < 3; c2++) {
|
|
double v = 0;
|
|
for (int i = 0; i < 3; i++) {
|
|
v += arg[i + 3 * c1] * arg[i + 3 * c2];
|
|
}
|
|
double expected = (c1 == c2) ? 1 : 0;
|
|
if (fabs(expected - v) > kTolerance) {
|
|
*result_listener << "Columns " << c1 << " and " << c2
|
|
<< " should have dot product " << expected
|
|
<< " but have " << v;
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// Use as:
|
|
// double matrix1[9];
|
|
// double matrix2[9];
|
|
// EXPECT_THAT(matrix1, IsNear3x3Matrix(matrix2));
|
|
MATCHER_P(IsNear3x3Matrix, expected, "") {
|
|
if (arg == NULL) {
|
|
*result_listener << "Null matrix";
|
|
return false;
|
|
}
|
|
|
|
for (int i = 0; i < 9; i++) {
|
|
if (fabs(arg[i] - expected[i]) > kTolerance) {
|
|
*result_listener << "component " << i << " should be " << expected[i];
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// Transforms a zero axis/angle to a quaternion.
|
|
TEST(Rotation, ZeroAngleAxisToQuaternion) {
|
|
double axis_angle[3] = { 0, 0, 0 };
|
|
double quaternion[4];
|
|
double expected[4] = { 1, 0, 0, 0 };
|
|
AngleAxisToQuaternion(axis_angle, quaternion);
|
|
EXPECT_THAT(quaternion, IsNormalizedQuaternion());
|
|
EXPECT_THAT(quaternion, IsNearQuaternion(expected));
|
|
}
|
|
|
|
// Test that exact conversion works for small angles.
|
|
TEST(Rotation, SmallAngleAxisToQuaternion) {
|
|
// Small, finite value to test.
|
|
double theta = 1.0e-2;
|
|
double axis_angle[3] = { theta, 0, 0 };
|
|
double quaternion[4];
|
|
double expected[4] = { cos(theta/2), sin(theta/2.0), 0, 0 };
|
|
AngleAxisToQuaternion(axis_angle, quaternion);
|
|
EXPECT_THAT(quaternion, IsNormalizedQuaternion());
|
|
EXPECT_THAT(quaternion, IsNearQuaternion(expected));
|
|
}
|
|
|
|
// Test that approximate conversion works for very small angles.
|
|
TEST(Rotation, TinyAngleAxisToQuaternion) {
|
|
// Very small value that could potentially cause underflow.
|
|
double theta = pow(numeric_limits<double>::min(), 0.75);
|
|
double axis_angle[3] = { theta, 0, 0 };
|
|
double quaternion[4];
|
|
double expected[4] = { cos(theta/2), sin(theta/2.0), 0, 0 };
|
|
AngleAxisToQuaternion(axis_angle, quaternion);
|
|
EXPECT_THAT(quaternion, IsNormalizedQuaternion());
|
|
EXPECT_THAT(quaternion, IsNearQuaternion(expected));
|
|
}
|
|
|
|
// Transforms a rotation by pi/2 around X to a quaternion.
|
|
TEST(Rotation, XRotationToQuaternion) {
|
|
double axis_angle[3] = { kPi / 2, 0, 0 };
|
|
double quaternion[4];
|
|
double expected[4] = { kHalfSqrt2, kHalfSqrt2, 0, 0 };
|
|
AngleAxisToQuaternion(axis_angle, quaternion);
|
|
EXPECT_THAT(quaternion, IsNormalizedQuaternion());
|
|
EXPECT_THAT(quaternion, IsNearQuaternion(expected));
|
|
}
|
|
|
|
// Transforms a unit quaternion to an axis angle.
|
|
TEST(Rotation, UnitQuaternionToAngleAxis) {
|
|
double quaternion[4] = { 1, 0, 0, 0 };
|
|
double axis_angle[3];
|
|
double expected[3] = { 0, 0, 0 };
|
|
QuaternionToAngleAxis(quaternion, axis_angle);
|
|
EXPECT_THAT(axis_angle, IsNearAngleAxis(expected));
|
|
}
|
|
|
|
// Transforms a quaternion that rotates by pi about the Y axis to an axis angle.
|
|
TEST(Rotation, YRotationQuaternionToAngleAxis) {
|
|
double quaternion[4] = { 0, 0, 1, 0 };
|
|
double axis_angle[3];
|
|
double expected[3] = { 0, kPi, 0 };
|
|
QuaternionToAngleAxis(quaternion, axis_angle);
|
|
EXPECT_THAT(axis_angle, IsNearAngleAxis(expected));
|
|
}
|
|
|
|
// Transforms a quaternion that rotates by pi/3 about the Z axis to an axis
|
|
// angle.
|
|
TEST(Rotation, ZRotationQuaternionToAngleAxis) {
|
|
double quaternion[4] = { sqrt(3) / 2, 0, 0, 0.5 };
|
|
double axis_angle[3];
|
|
double expected[3] = { 0, 0, kPi / 3 };
|
|
QuaternionToAngleAxis(quaternion, axis_angle);
|
|
EXPECT_THAT(axis_angle, IsNearAngleAxis(expected));
|
|
}
|
|
|
|
// Test that exact conversion works for small angles.
|
|
TEST(Rotation, SmallQuaternionToAngleAxis) {
|
|
// Small, finite value to test.
|
|
double theta = 1.0e-2;
|
|
double quaternion[4] = { cos(theta/2), sin(theta/2.0), 0, 0 };
|
|
double axis_angle[3];
|
|
double expected[3] = { theta, 0, 0 };
|
|
QuaternionToAngleAxis(quaternion, axis_angle);
|
|
EXPECT_THAT(axis_angle, IsNearAngleAxis(expected));
|
|
}
|
|
|
|
// Test that approximate conversion works for very small angles.
|
|
TEST(Rotation, TinyQuaternionToAngleAxis) {
|
|
// Very small value that could potentially cause underflow.
|
|
double theta = pow(numeric_limits<double>::min(), 0.75);
|
|
double quaternion[4] = { cos(theta/2), sin(theta/2.0), 0, 0 };
|
|
double axis_angle[3];
|
|
double expected[3] = { theta, 0, 0 };
|
|
QuaternionToAngleAxis(quaternion, axis_angle);
|
|
EXPECT_THAT(axis_angle, IsNearAngleAxis(expected));
|
|
}
|
|
|
|
TEST(Rotation, QuaternionToAngleAxisAngleIsLessThanPi) {
|
|
double quaternion[4];
|
|
double angle_axis[3];
|
|
|
|
const double half_theta = 0.75 * kPi;
|
|
|
|
quaternion[0] = cos(half_theta);
|
|
quaternion[1] = 1.0 * sin(half_theta);
|
|
quaternion[2] = 0.0;
|
|
quaternion[3] = 0.0;
|
|
QuaternionToAngleAxis(quaternion, angle_axis);
|
|
const double angle = sqrt(angle_axis[0] * angle_axis[0] +
|
|
angle_axis[1] * angle_axis[1] +
|
|
angle_axis[2] * angle_axis[2]);
|
|
EXPECT_LE(angle, kPi);
|
|
}
|
|
|
|
static const int kNumTrials = 10000;
|
|
|
|
// Takes a bunch of random axis/angle values, converts them to quaternions,
|
|
// and back again.
|
|
TEST(Rotation, AngleAxisToQuaterionAndBack) {
|
|
srand(5);
|
|
for (int i = 0; i < kNumTrials; i++) {
|
|
double axis_angle[3];
|
|
// Make an axis by choosing three random numbers in [-1, 1) and
|
|
// normalizing.
|
|
double norm = 0;
|
|
for (int i = 0; i < 3; i++) {
|
|
axis_angle[i] = RandDouble() * 2 - 1;
|
|
norm += axis_angle[i] * axis_angle[i];
|
|
}
|
|
norm = sqrt(norm);
|
|
|
|
// Angle in [-pi, pi).
|
|
double theta = kPi * 2 * RandDouble() - kPi;
|
|
for (int i = 0; i < 3; i++) {
|
|
axis_angle[i] = axis_angle[i] * theta / norm;
|
|
}
|
|
|
|
double quaternion[4];
|
|
double round_trip[3];
|
|
// We use ASSERTs here because if there's one failure, there are
|
|
// probably many and spewing a million failures doesn't make anyone's
|
|
// day.
|
|
AngleAxisToQuaternion(axis_angle, quaternion);
|
|
ASSERT_THAT(quaternion, IsNormalizedQuaternion());
|
|
QuaternionToAngleAxis(quaternion, round_trip);
|
|
ASSERT_THAT(round_trip, IsNearAngleAxis(axis_angle));
|
|
}
|
|
}
|
|
|
|
// Takes a bunch of random quaternions, converts them to axis/angle,
|
|
// and back again.
|
|
TEST(Rotation, QuaterionToAngleAxisAndBack) {
|
|
srand(5);
|
|
for (int i = 0; i < kNumTrials; i++) {
|
|
double quaternion[4];
|
|
// Choose four random numbers in [-1, 1) and normalize.
|
|
double norm = 0;
|
|
for (int i = 0; i < 4; i++) {
|
|
quaternion[i] = RandDouble() * 2 - 1;
|
|
norm += quaternion[i] * quaternion[i];
|
|
}
|
|
norm = sqrt(norm);
|
|
|
|
for (int i = 0; i < 4; i++) {
|
|
quaternion[i] = quaternion[i] / norm;
|
|
}
|
|
|
|
double axis_angle[3];
|
|
double round_trip[4];
|
|
QuaternionToAngleAxis(quaternion, axis_angle);
|
|
AngleAxisToQuaternion(axis_angle, round_trip);
|
|
ASSERT_THAT(round_trip, IsNormalizedQuaternion());
|
|
ASSERT_THAT(round_trip, IsNearQuaternion(quaternion));
|
|
}
|
|
}
|
|
|
|
// Transforms a zero axis/angle to a rotation matrix.
|
|
TEST(Rotation, ZeroAngleAxisToRotationMatrix) {
|
|
double axis_angle[3] = { 0, 0, 0 };
|
|
double matrix[9];
|
|
double expected[9] = { 1, 0, 0, 0, 1, 0, 0, 0, 1 };
|
|
AngleAxisToRotationMatrix(axis_angle, matrix);
|
|
EXPECT_THAT(matrix, IsOrthonormal());
|
|
EXPECT_THAT(matrix, IsNear3x3Matrix(expected));
|
|
}
|
|
|
|
TEST(Rotation, NearZeroAngleAxisToRotationMatrix) {
|
|
double axis_angle[3] = { 1e-24, 2e-24, 3e-24 };
|
|
double matrix[9];
|
|
double expected[9] = { 1, 0, 0, 0, 1, 0, 0, 0, 1 };
|
|
AngleAxisToRotationMatrix(axis_angle, matrix);
|
|
EXPECT_THAT(matrix, IsOrthonormal());
|
|
EXPECT_THAT(matrix, IsNear3x3Matrix(expected));
|
|
}
|
|
|
|
// Transforms a rotation by pi/2 around X to a rotation matrix and back.
|
|
TEST(Rotation, XRotationToRotationMatrix) {
|
|
double axis_angle[3] = { kPi / 2, 0, 0 };
|
|
double matrix[9];
|
|
// The rotation matrices are stored column-major.
|
|
double expected[9] = { 1, 0, 0, 0, 0, 1, 0, -1, 0 };
|
|
AngleAxisToRotationMatrix(axis_angle, matrix);
|
|
EXPECT_THAT(matrix, IsOrthonormal());
|
|
EXPECT_THAT(matrix, IsNear3x3Matrix(expected));
|
|
double round_trip[3];
|
|
RotationMatrixToAngleAxis(matrix, round_trip);
|
|
EXPECT_THAT(round_trip, IsNearAngleAxis(axis_angle));
|
|
}
|
|
|
|
// Transforms an axis angle that rotates by pi about the Y axis to a
|
|
// rotation matrix and back.
|
|
TEST(Rotation, YRotationToRotationMatrix) {
|
|
double axis_angle[3] = { 0, kPi, 0 };
|
|
double matrix[9];
|
|
double expected[9] = { -1, 0, 0, 0, 1, 0, 0, 0, -1 };
|
|
AngleAxisToRotationMatrix(axis_angle, matrix);
|
|
EXPECT_THAT(matrix, IsOrthonormal());
|
|
EXPECT_THAT(matrix, IsNear3x3Matrix(expected));
|
|
|
|
double round_trip[3];
|
|
RotationMatrixToAngleAxis(matrix, round_trip);
|
|
EXPECT_THAT(round_trip, IsNearAngleAxis(axis_angle));
|
|
}
|
|
|
|
TEST(Rotation, NearPiAngleAxisRoundTrip) {
|
|
double in_axis_angle[3];
|
|
double matrix[9];
|
|
double out_axis_angle[3];
|
|
|
|
srand(5);
|
|
for (int i = 0; i < kNumTrials; i++) {
|
|
// Make an axis by choosing three random numbers in [-1, 1) and
|
|
// normalizing.
|
|
double norm = 0;
|
|
for (int i = 0; i < 3; i++) {
|
|
in_axis_angle[i] = RandDouble() * 2 - 1;
|
|
norm += in_axis_angle[i] * in_axis_angle[i];
|
|
}
|
|
norm = sqrt(norm);
|
|
|
|
// Angle in [pi - kMaxSmallAngle, pi).
|
|
const double kMaxSmallAngle = 1e-8;
|
|
double theta = kPi - kMaxSmallAngle * RandDouble();
|
|
|
|
for (int i = 0; i < 3; i++) {
|
|
in_axis_angle[i] *= (theta / norm);
|
|
}
|
|
AngleAxisToRotationMatrix(in_axis_angle, matrix);
|
|
RotationMatrixToAngleAxis(matrix, out_axis_angle);
|
|
EXPECT_THAT(in_axis_angle, IsNearAngleAxis(out_axis_angle));
|
|
}
|
|
}
|
|
|
|
TEST(Rotation, AtPiAngleAxisRoundTrip) {
|
|
// A rotation of kPi about the X axis;
|
|
static const double kMatrix[3][3] = {
|
|
{1.0, 0.0, 0.0},
|
|
{0.0, -1.0, 0.0},
|
|
{0.0, 0.0, -1.0}
|
|
};
|
|
|
|
double in_matrix[9];
|
|
// Fill it from kMatrix in col-major order.
|
|
for (int j = 0, k = 0; j < 3; ++j) {
|
|
for (int i = 0; i < 3; ++i, ++k) {
|
|
in_matrix[k] = kMatrix[i][j];
|
|
}
|
|
}
|
|
|
|
const double expected_axis_angle[3] = { kPi, 0, 0 };
|
|
|
|
double out_matrix[9];
|
|
double axis_angle[3];
|
|
RotationMatrixToAngleAxis(in_matrix, axis_angle);
|
|
AngleAxisToRotationMatrix(axis_angle, out_matrix);
|
|
|
|
LOG(INFO) << "AngleAxis = " << axis_angle[0] << " " << axis_angle[1]
|
|
<< " " << axis_angle[2];
|
|
LOG(INFO) << "Expected AngleAxis = " << kPi << " 0 0";
|
|
double out_rowmajor[3][3];
|
|
for (int j = 0, k = 0; j < 3; ++j) {
|
|
for (int i = 0; i < 3; ++i, ++k) {
|
|
out_rowmajor[i][j] = out_matrix[k];
|
|
}
|
|
}
|
|
LOG(INFO) << "Rotation:";
|
|
LOG(INFO) << "EXPECTED | ACTUAL";
|
|
for (int i = 0; i < 3; ++i) {
|
|
string line;
|
|
for (int j = 0; j < 3; ++j) {
|
|
StringAppendF(&line, "%g ", kMatrix[i][j]);
|
|
}
|
|
line += " | ";
|
|
for (int j = 0; j < 3; ++j) {
|
|
StringAppendF(&line, "%g ", out_rowmajor[i][j]);
|
|
}
|
|
LOG(INFO) << line;
|
|
}
|
|
|
|
EXPECT_THAT(axis_angle, IsNearAngleAxis(expected_axis_angle));
|
|
EXPECT_THAT(out_matrix, IsNear3x3Matrix(in_matrix));
|
|
}
|
|
|
|
// Transforms an axis angle that rotates by pi/3 about the Z axis to a
|
|
// rotation matrix.
|
|
TEST(Rotation, ZRotationToRotationMatrix) {
|
|
double axis_angle[3] = { 0, 0, kPi / 3 };
|
|
double matrix[9];
|
|
// This is laid-out row-major on the screen but is actually stored
|
|
// column-major.
|
|
double expected[9] = { 0.5, sqrt(3) / 2, 0, // Column 1
|
|
-sqrt(3) / 2, 0.5, 0, // Column 2
|
|
0, 0, 1 }; // Column 3
|
|
AngleAxisToRotationMatrix(axis_angle, matrix);
|
|
EXPECT_THAT(matrix, IsOrthonormal());
|
|
EXPECT_THAT(matrix, IsNear3x3Matrix(expected));
|
|
double round_trip[3];
|
|
RotationMatrixToAngleAxis(matrix, round_trip);
|
|
EXPECT_THAT(round_trip, IsNearAngleAxis(axis_angle));
|
|
}
|
|
|
|
// Takes a bunch of random axis/angle values, converts them to rotation
|
|
// matrices, and back again.
|
|
TEST(Rotation, AngleAxisToRotationMatrixAndBack) {
|
|
srand(5);
|
|
for (int i = 0; i < kNumTrials; i++) {
|
|
double axis_angle[3];
|
|
// Make an axis by choosing three random numbers in [-1, 1) and
|
|
// normalizing.
|
|
double norm = 0;
|
|
for (int i = 0; i < 3; i++) {
|
|
axis_angle[i] = RandDouble() * 2 - 1;
|
|
norm += axis_angle[i] * axis_angle[i];
|
|
}
|
|
norm = sqrt(norm);
|
|
|
|
// Angle in [-pi, pi).
|
|
double theta = kPi * 2 * RandDouble() - kPi;
|
|
for (int i = 0; i < 3; i++) {
|
|
axis_angle[i] = axis_angle[i] * theta / norm;
|
|
}
|
|
|
|
double matrix[9];
|
|
double round_trip[3];
|
|
AngleAxisToRotationMatrix(axis_angle, matrix);
|
|
ASSERT_THAT(matrix, IsOrthonormal());
|
|
RotationMatrixToAngleAxis(matrix, round_trip);
|
|
|
|
for (int i = 0; i < 3; ++i) {
|
|
EXPECT_NEAR(round_trip[i], axis_angle[i], kLooseTolerance);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Takes a bunch of random axis/angle values near zero, converts them
|
|
// to rotation matrices, and back again.
|
|
TEST(Rotation, AngleAxisToRotationMatrixAndBackNearZero) {
|
|
srand(5);
|
|
for (int i = 0; i < kNumTrials; i++) {
|
|
double axis_angle[3];
|
|
// Make an axis by choosing three random numbers in [-1, 1) and
|
|
// normalizing.
|
|
double norm = 0;
|
|
for (int i = 0; i < 3; i++) {
|
|
axis_angle[i] = RandDouble() * 2 - 1;
|
|
norm += axis_angle[i] * axis_angle[i];
|
|
}
|
|
norm = sqrt(norm);
|
|
|
|
// Tiny theta.
|
|
double theta = 1e-16 * (kPi * 2 * RandDouble() - kPi);
|
|
for (int i = 0; i < 3; i++) {
|
|
axis_angle[i] = axis_angle[i] * theta / norm;
|
|
}
|
|
|
|
double matrix[9];
|
|
double round_trip[3];
|
|
AngleAxisToRotationMatrix(axis_angle, matrix);
|
|
ASSERT_THAT(matrix, IsOrthonormal());
|
|
RotationMatrixToAngleAxis(matrix, round_trip);
|
|
|
|
for (int i = 0; i < 3; ++i) {
|
|
EXPECT_NEAR(round_trip[i], axis_angle[i],
|
|
numeric_limits<double>::epsilon());
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// Transposes a 3x3 matrix.
|
|
static void Transpose3x3(double m[9]) {
|
|
swap(m[1], m[3]);
|
|
swap(m[2], m[6]);
|
|
swap(m[5], m[7]);
|
|
}
|
|
|
|
// Convert Euler angles from radians to degrees.
|
|
static void ToDegrees(double ea[3]) {
|
|
for (int i = 0; i < 3; ++i)
|
|
ea[i] *= 180.0 / kPi;
|
|
}
|
|
|
|
// Compare the 3x3 rotation matrices produced by the axis-angle
|
|
// rotation 'aa' and the Euler angle rotation 'ea' (in radians).
|
|
static void CompareEulerToAngleAxis(double aa[3], double ea[3]) {
|
|
double aa_matrix[9];
|
|
AngleAxisToRotationMatrix(aa, aa_matrix);
|
|
Transpose3x3(aa_matrix); // Column to row major order.
|
|
|
|
double ea_matrix[9];
|
|
ToDegrees(ea); // Radians to degrees.
|
|
const int kRowStride = 3;
|
|
EulerAnglesToRotationMatrix(ea, kRowStride, ea_matrix);
|
|
|
|
EXPECT_THAT(aa_matrix, IsOrthonormal());
|
|
EXPECT_THAT(ea_matrix, IsOrthonormal());
|
|
EXPECT_THAT(ea_matrix, IsNear3x3Matrix(aa_matrix));
|
|
}
|
|
|
|
// Test with rotation axis along the x/y/z axes.
|
|
// Also test zero rotation.
|
|
TEST(EulerAnglesToRotationMatrix, OnAxis) {
|
|
int n_tests = 0;
|
|
for (double x = -1.0; x <= 1.0; x += 1.0) {
|
|
for (double y = -1.0; y <= 1.0; y += 1.0) {
|
|
for (double z = -1.0; z <= 1.0; z += 1.0) {
|
|
if ((x != 0) + (y != 0) + (z != 0) > 1)
|
|
continue;
|
|
double axis_angle[3] = {x, y, z};
|
|
double euler_angles[3] = {x, y, z};
|
|
CompareEulerToAngleAxis(axis_angle, euler_angles);
|
|
++n_tests;
|
|
}
|
|
}
|
|
}
|
|
CHECK_EQ(7, n_tests);
|
|
}
|
|
|
|
// Test that a random rotation produces an orthonormal rotation
|
|
// matrix.
|
|
TEST(EulerAnglesToRotationMatrix, IsOrthonormal) {
|
|
srand(5);
|
|
for (int trial = 0; trial < kNumTrials; ++trial) {
|
|
double ea[3];
|
|
for (int i = 0; i < 3; ++i)
|
|
ea[i] = 360.0 * (RandDouble() * 2.0 - 1.0);
|
|
double ea_matrix[9];
|
|
ToDegrees(ea); // Radians to degrees.
|
|
EulerAnglesToRotationMatrix(ea, 3, ea_matrix);
|
|
EXPECT_THAT(ea_matrix, IsOrthonormal());
|
|
}
|
|
}
|
|
|
|
// Tests using Jets for specific behavior involving auto differentiation
|
|
// near singularity points.
|
|
|
|
typedef Jet<double, 3> J3;
|
|
typedef Jet<double, 4> J4;
|
|
|
|
J3 MakeJ3(double a, double v0, double v1, double v2) {
|
|
J3 j;
|
|
j.a = a;
|
|
j.v[0] = v0;
|
|
j.v[1] = v1;
|
|
j.v[2] = v2;
|
|
return j;
|
|
}
|
|
|
|
J4 MakeJ4(double a, double v0, double v1, double v2, double v3) {
|
|
J4 j;
|
|
j.a = a;
|
|
j.v[0] = v0;
|
|
j.v[1] = v1;
|
|
j.v[2] = v2;
|
|
j.v[3] = v3;
|
|
return j;
|
|
}
|
|
|
|
|
|
bool IsClose(double x, double y) {
|
|
EXPECT_FALSE(IsNaN(x));
|
|
EXPECT_FALSE(IsNaN(y));
|
|
double absdiff = fabs(x - y);
|
|
if (x == 0 || y == 0) {
|
|
return absdiff <= kTolerance;
|
|
}
|
|
double reldiff = absdiff / max(fabs(x), fabs(y));
|
|
return reldiff <= kTolerance;
|
|
}
|
|
|
|
template <int N>
|
|
bool IsClose(const Jet<double, N> &x, const Jet<double, N> &y) {
|
|
if (IsClose(x.a, y.a)) {
|
|
for (int i = 0; i < N; i++) {
|
|
if (!IsClose(x.v[i], y.v[i])) {
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
template <int M, int N>
|
|
void ExpectJetArraysClose(const Jet<double, N> *x, const Jet<double, N> *y) {
|
|
for (int i = 0; i < M; i++) {
|
|
if (!IsClose(x[i], y[i])) {
|
|
LOG(ERROR) << "Jet " << i << "/" << M << " not equal";
|
|
LOG(ERROR) << "x[" << i << "]: " << x[i];
|
|
LOG(ERROR) << "y[" << i << "]: " << y[i];
|
|
Jet<double, N> d, zero;
|
|
d.a = y[i].a - x[i].a;
|
|
for (int j = 0; j < N; j++) {
|
|
d.v[j] = y[i].v[j] - x[i].v[j];
|
|
}
|
|
LOG(ERROR) << "diff: " << d;
|
|
EXPECT_TRUE(IsClose(x[i], y[i]));
|
|
}
|
|
}
|
|
}
|
|
|
|
// Log-10 of a value well below machine precision.
|
|
static const int kSmallTinyCutoff =
|
|
static_cast<int>(2 * log(numeric_limits<double>::epsilon())/log(10.0));
|
|
|
|
// Log-10 of a value just below values representable by double.
|
|
static const int kTinyZeroLimit =
|
|
static_cast<int>(1 + log(numeric_limits<double>::min())/log(10.0));
|
|
|
|
// Test that exact conversion works for small angles when jets are used.
|
|
TEST(Rotation, SmallAngleAxisToQuaternionForJets) {
|
|
// Examine small x rotations that are still large enough
|
|
// to be well within the range represented by doubles.
|
|
for (int i = -2; i >= kSmallTinyCutoff; i--) {
|
|
double theta = pow(10.0, i);
|
|
J3 axis_angle[3] = { J3(theta, 0), J3(0, 1), J3(0, 2) };
|
|
J3 quaternion[4];
|
|
J3 expected[4] = {
|
|
MakeJ3(cos(theta/2), -sin(theta/2)/2, 0, 0),
|
|
MakeJ3(sin(theta/2), cos(theta/2)/2, 0, 0),
|
|
MakeJ3(0, 0, sin(theta/2)/theta, 0),
|
|
MakeJ3(0, 0, 0, sin(theta/2)/theta),
|
|
};
|
|
AngleAxisToQuaternion(axis_angle, quaternion);
|
|
ExpectJetArraysClose<4, 3>(quaternion, expected);
|
|
}
|
|
}
|
|
|
|
|
|
// Test that conversion works for very small angles when jets are used.
|
|
TEST(Rotation, TinyAngleAxisToQuaternionForJets) {
|
|
// Examine tiny x rotations that extend all the way to where
|
|
// underflow occurs.
|
|
for (int i = kSmallTinyCutoff; i >= kTinyZeroLimit; i--) {
|
|
double theta = pow(10.0, i);
|
|
J3 axis_angle[3] = { J3(theta, 0), J3(0, 1), J3(0, 2) };
|
|
J3 quaternion[4];
|
|
// To avoid loss of precision in the test itself,
|
|
// a finite expansion is used here, which will
|
|
// be exact up to machine precision for the test values used.
|
|
J3 expected[4] = {
|
|
MakeJ3(1.0, 0, 0, 0),
|
|
MakeJ3(0, 0.5, 0, 0),
|
|
MakeJ3(0, 0, 0.5, 0),
|
|
MakeJ3(0, 0, 0, 0.5),
|
|
};
|
|
AngleAxisToQuaternion(axis_angle, quaternion);
|
|
ExpectJetArraysClose<4, 3>(quaternion, expected);
|
|
}
|
|
}
|
|
|
|
// Test that derivatives are correct for zero rotation.
|
|
TEST(Rotation, ZeroAngleAxisToQuaternionForJets) {
|
|
J3 axis_angle[3] = { J3(0, 0), J3(0, 1), J3(0, 2) };
|
|
J3 quaternion[4];
|
|
J3 expected[4] = {
|
|
MakeJ3(1.0, 0, 0, 0),
|
|
MakeJ3(0, 0.5, 0, 0),
|
|
MakeJ3(0, 0, 0.5, 0),
|
|
MakeJ3(0, 0, 0, 0.5),
|
|
};
|
|
AngleAxisToQuaternion(axis_angle, quaternion);
|
|
ExpectJetArraysClose<4, 3>(quaternion, expected);
|
|
}
|
|
|
|
// Test that exact conversion works for small angles.
|
|
TEST(Rotation, SmallQuaternionToAngleAxisForJets) {
|
|
// Examine small x rotations that are still large enough
|
|
// to be well within the range represented by doubles.
|
|
for (int i = -2; i >= kSmallTinyCutoff; i--) {
|
|
double theta = pow(10.0, i);
|
|
double s = sin(theta);
|
|
double c = cos(theta);
|
|
J4 quaternion[4] = { J4(c, 0), J4(s, 1), J4(0, 2), J4(0, 3) };
|
|
J4 axis_angle[3];
|
|
J4 expected[3] = {
|
|
MakeJ4(s, -2*theta, 2*theta*c, 0, 0),
|
|
MakeJ4(0, 0, 0, 2*theta/s, 0),
|
|
MakeJ4(0, 0, 0, 0, 2*theta/s),
|
|
};
|
|
QuaternionToAngleAxis(quaternion, axis_angle);
|
|
ExpectJetArraysClose<3, 4>(axis_angle, expected);
|
|
}
|
|
}
|
|
|
|
// Test that conversion works for very small angles.
|
|
TEST(Rotation, TinyQuaternionToAngleAxisForJets) {
|
|
// Examine tiny x rotations that extend all the way to where
|
|
// underflow occurs.
|
|
for (int i = kSmallTinyCutoff; i >= kTinyZeroLimit; i--) {
|
|
double theta = pow(10.0, i);
|
|
double s = sin(theta);
|
|
double c = cos(theta);
|
|
J4 quaternion[4] = { J4(c, 0), J4(s, 1), J4(0, 2), J4(0, 3) };
|
|
J4 axis_angle[3];
|
|
// To avoid loss of precision in the test itself,
|
|
// a finite expansion is used here, which will
|
|
// be exact up to machine precision for the test values used.
|
|
J4 expected[3] = {
|
|
MakeJ4(theta, -2*theta, 2.0, 0, 0),
|
|
MakeJ4(0, 0, 0, 2.0, 0),
|
|
MakeJ4(0, 0, 0, 0, 2.0),
|
|
};
|
|
QuaternionToAngleAxis(quaternion, axis_angle);
|
|
ExpectJetArraysClose<3, 4>(axis_angle, expected);
|
|
}
|
|
}
|
|
|
|
// Test that conversion works for no rotation.
|
|
TEST(Rotation, ZeroQuaternionToAngleAxisForJets) {
|
|
J4 quaternion[4] = { J4(1, 0), J4(0, 1), J4(0, 2), J4(0, 3) };
|
|
J4 axis_angle[3];
|
|
J4 expected[3] = {
|
|
MakeJ4(0, 0, 2.0, 0, 0),
|
|
MakeJ4(0, 0, 0, 2.0, 0),
|
|
MakeJ4(0, 0, 0, 0, 2.0),
|
|
};
|
|
QuaternionToAngleAxis(quaternion, axis_angle);
|
|
ExpectJetArraysClose<3, 4>(axis_angle, expected);
|
|
}
|
|
|
|
TEST(Quaternion, RotatePointGivesSameAnswerAsRotationByMatrixCanned) {
|
|
// Canned data generated in octave.
|
|
double const q[4] = {
|
|
+0.1956830471754074,
|
|
-0.0150618562474847,
|
|
+0.7634572982788086,
|
|
-0.3019454777240753,
|
|
};
|
|
double const Q[3][3] = { // Scaled rotation matrix.
|
|
{ -0.6355194033477252, 0.0951730541682254, 0.3078870197911186 },
|
|
{ -0.1411693904792992, 0.5297609702153905, -0.4551502574482019 },
|
|
{ -0.2896955822708862, -0.4669396571547050, -0.4536309793389248 },
|
|
};
|
|
double const R[3][3] = { // With unit rows and columns.
|
|
{ -0.8918859164053080, 0.1335655625725649, 0.4320876677394745 },
|
|
{ -0.1981166751680096, 0.7434648665444399, -0.6387564287225856 },
|
|
{ -0.4065578619806013, -0.6553016349046693, -0.6366242786393164 },
|
|
};
|
|
|
|
// Compute R from q and compare to known answer.
|
|
double Rq[3][3];
|
|
QuaternionToScaledRotation<double>(q, Rq[0]);
|
|
ExpectArraysClose(9, Q[0], Rq[0], kTolerance);
|
|
|
|
// Now do the same but compute R with normalization.
|
|
QuaternionToRotation<double>(q, Rq[0]);
|
|
ExpectArraysClose(9, R[0], Rq[0], kTolerance);
|
|
}
|
|
|
|
|
|
TEST(Quaternion, RotatePointGivesSameAnswerAsRotationByMatrix) {
|
|
// Rotation defined by a unit quaternion.
|
|
double const q[4] = {
|
|
0.2318160216097109,
|
|
-0.0178430356832060,
|
|
0.9044300776717159,
|
|
-0.3576998641394597,
|
|
};
|
|
double const p[3] = {
|
|
+0.11,
|
|
-13.15,
|
|
1.17,
|
|
};
|
|
|
|
double R[3 * 3];
|
|
QuaternionToRotation(q, R);
|
|
|
|
double result1[3];
|
|
UnitQuaternionRotatePoint(q, p, result1);
|
|
|
|
double result2[3];
|
|
VectorRef(result2, 3) = ConstMatrixRef(R, 3, 3)* ConstVectorRef(p, 3);
|
|
ExpectArraysClose(3, result1, result2, kTolerance);
|
|
}
|
|
|
|
|
|
// Verify that (a * b) * c == a * (b * c).
|
|
TEST(Quaternion, MultiplicationIsAssociative) {
|
|
double a[4];
|
|
double b[4];
|
|
double c[4];
|
|
for (int i = 0; i < 4; ++i) {
|
|
a[i] = 2 * RandDouble() - 1;
|
|
b[i] = 2 * RandDouble() - 1;
|
|
c[i] = 2 * RandDouble() - 1;
|
|
}
|
|
|
|
double ab[4];
|
|
double ab_c[4];
|
|
QuaternionProduct(a, b, ab);
|
|
QuaternionProduct(ab, c, ab_c);
|
|
|
|
double bc[4];
|
|
double a_bc[4];
|
|
QuaternionProduct(b, c, bc);
|
|
QuaternionProduct(a, bc, a_bc);
|
|
|
|
ASSERT_NEAR(ab_c[0], a_bc[0], kTolerance);
|
|
ASSERT_NEAR(ab_c[1], a_bc[1], kTolerance);
|
|
ASSERT_NEAR(ab_c[2], a_bc[2], kTolerance);
|
|
ASSERT_NEAR(ab_c[3], a_bc[3], kTolerance);
|
|
}
|
|
|
|
|
|
TEST(AngleAxis, RotatePointGivesSameAnswerAsRotationMatrix) {
|
|
double angle_axis[3];
|
|
double R[9];
|
|
double p[3];
|
|
double angle_axis_rotated_p[3];
|
|
double rotation_matrix_rotated_p[3];
|
|
|
|
for (int i = 0; i < 10000; ++i) {
|
|
double theta = (2.0 * i * 0.0011 - 1.0) * kPi;
|
|
for (int j = 0; j < 50; ++j) {
|
|
double norm2 = 0.0;
|
|
for (int k = 0; k < 3; ++k) {
|
|
angle_axis[k] = 2.0 * RandDouble() - 1.0;
|
|
p[k] = 2.0 * RandDouble() - 1.0;
|
|
norm2 = angle_axis[k] * angle_axis[k];
|
|
}
|
|
|
|
const double inv_norm = theta / sqrt(norm2);
|
|
for (int k = 0; k < 3; ++k) {
|
|
angle_axis[k] *= inv_norm;
|
|
}
|
|
|
|
AngleAxisToRotationMatrix(angle_axis, R);
|
|
rotation_matrix_rotated_p[0] = R[0] * p[0] + R[3] * p[1] + R[6] * p[2];
|
|
rotation_matrix_rotated_p[1] = R[1] * p[0] + R[4] * p[1] + R[7] * p[2];
|
|
rotation_matrix_rotated_p[2] = R[2] * p[0] + R[5] * p[1] + R[8] * p[2];
|
|
|
|
AngleAxisRotatePoint(angle_axis, p, angle_axis_rotated_p);
|
|
for (int k = 0; k < 3; ++k) {
|
|
EXPECT_NEAR(rotation_matrix_rotated_p[k],
|
|
angle_axis_rotated_p[k],
|
|
kTolerance) << "p: " << p[0]
|
|
<< " " << p[1]
|
|
<< " " << p[2]
|
|
<< " angle_axis: " << angle_axis[0]
|
|
<< " " << angle_axis[1]
|
|
<< " " << angle_axis[2];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST(AngleAxis, NearZeroRotatePointGivesSameAnswerAsRotationMatrix) {
|
|
double angle_axis[3];
|
|
double R[9];
|
|
double p[3];
|
|
double angle_axis_rotated_p[3];
|
|
double rotation_matrix_rotated_p[3];
|
|
|
|
for (int i = 0; i < 10000; ++i) {
|
|
double norm2 = 0.0;
|
|
for (int k = 0; k < 3; ++k) {
|
|
angle_axis[k] = 2.0 * RandDouble() - 1.0;
|
|
p[k] = 2.0 * RandDouble() - 1.0;
|
|
norm2 = angle_axis[k] * angle_axis[k];
|
|
}
|
|
|
|
double theta = (2.0 * i * 0.0001 - 1.0) * 1e-16;
|
|
const double inv_norm = theta / sqrt(norm2);
|
|
for (int k = 0; k < 3; ++k) {
|
|
angle_axis[k] *= inv_norm;
|
|
}
|
|
|
|
AngleAxisToRotationMatrix(angle_axis, R);
|
|
rotation_matrix_rotated_p[0] = R[0] * p[0] + R[3] * p[1] + R[6] * p[2];
|
|
rotation_matrix_rotated_p[1] = R[1] * p[0] + R[4] * p[1] + R[7] * p[2];
|
|
rotation_matrix_rotated_p[2] = R[2] * p[0] + R[5] * p[1] + R[8] * p[2];
|
|
|
|
AngleAxisRotatePoint(angle_axis, p, angle_axis_rotated_p);
|
|
for (int k = 0; k < 3; ++k) {
|
|
EXPECT_NEAR(rotation_matrix_rotated_p[k],
|
|
angle_axis_rotated_p[k],
|
|
kTolerance) << "p: " << p[0]
|
|
<< " " << p[1]
|
|
<< " " << p[2]
|
|
<< " angle_axis: " << angle_axis[0]
|
|
<< " " << angle_axis[1]
|
|
<< " " << angle_axis[2];
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST(MatrixAdapter, RowMajor3x3ReturnTypeAndAccessIsCorrect) {
|
|
double array[9] = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0 };
|
|
const float const_array[9] =
|
|
{ 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f, 9.0f };
|
|
MatrixAdapter<double, 3, 1> A = RowMajorAdapter3x3(array);
|
|
MatrixAdapter<const float, 3, 1> B = RowMajorAdapter3x3(const_array);
|
|
|
|
for (int i = 0; i < 3; ++i) {
|
|
for (int j = 0; j < 3; ++j) {
|
|
// The values are integers from 1 to 9, so equality tests are appropriate
|
|
// even for float and double values.
|
|
EXPECT_EQ(A(i, j), array[3*i+j]);
|
|
EXPECT_EQ(B(i, j), const_array[3*i+j]);
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST(MatrixAdapter, ColumnMajor3x3ReturnTypeAndAccessIsCorrect) {
|
|
double array[9] = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0 };
|
|
const float const_array[9] =
|
|
{ 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f, 9.0f };
|
|
MatrixAdapter<double, 1, 3> A = ColumnMajorAdapter3x3(array);
|
|
MatrixAdapter<const float, 1, 3> B = ColumnMajorAdapter3x3(const_array);
|
|
|
|
for (int i = 0; i < 3; ++i) {
|
|
for (int j = 0; j < 3; ++j) {
|
|
// The values are integers from 1 to 9, so equality tests are
|
|
// appropriate even for float and double values.
|
|
EXPECT_EQ(A(i, j), array[3*j+i]);
|
|
EXPECT_EQ(B(i, j), const_array[3*j+i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST(MatrixAdapter, RowMajor2x4IsCorrect) {
|
|
const int expected[8] = { 1, 2, 3, 4, 5, 6, 7, 8 };
|
|
int array[8];
|
|
MatrixAdapter<int, 4, 1> M(array);
|
|
M(0, 0) = 1; M(0, 1) = 2; M(0, 2) = 3; M(0, 3) = 4;
|
|
M(1, 0) = 5; M(1, 1) = 6; M(1, 2) = 7; M(1, 3) = 8;
|
|
for (int k = 0; k < 8; ++k) {
|
|
EXPECT_EQ(array[k], expected[k]);
|
|
}
|
|
}
|
|
|
|
TEST(MatrixAdapter, ColumnMajor2x4IsCorrect) {
|
|
const int expected[8] = { 1, 5, 2, 6, 3, 7, 4, 8 };
|
|
int array[8];
|
|
MatrixAdapter<int, 1, 2> M(array);
|
|
M(0, 0) = 1; M(0, 1) = 2; M(0, 2) = 3; M(0, 3) = 4;
|
|
M(1, 0) = 5; M(1, 1) = 6; M(1, 2) = 7; M(1, 3) = 8;
|
|
for (int k = 0; k < 8; ++k) {
|
|
EXPECT_EQ(array[k], expected[k]);
|
|
}
|
|
}
|
|
|
|
TEST(RotationMatrixToAngleAxis, NearPiExampleOneFromTobiasStrauss) {
|
|
// Example from Tobias Strauss
|
|
const double rotation_matrix[] = {
|
|
-0.999807135425239, -0.0128154391194470, -0.0148814136745799,
|
|
-0.0128154391194470, -0.148441438622958, 0.988838158557669,
|
|
-0.0148814136745799, 0.988838158557669, 0.148248574048196
|
|
};
|
|
|
|
double angle_axis[3];
|
|
RotationMatrixToAngleAxis(RowMajorAdapter3x3(rotation_matrix), angle_axis);
|
|
double round_trip[9];
|
|
AngleAxisToRotationMatrix(angle_axis, RowMajorAdapter3x3(round_trip));
|
|
EXPECT_THAT(rotation_matrix, IsNear3x3Matrix(round_trip));
|
|
}
|
|
|
|
void CheckRotationMatrixToAngleAxisRoundTrip(const double theta,
|
|
const double phi,
|
|
const double angle) {
|
|
double angle_axis[3];
|
|
angle_axis[0] = angle * sin(phi) * cos(theta);
|
|
angle_axis[1] = angle * sin(phi) * sin(theta);
|
|
angle_axis[2] = angle * cos(phi);
|
|
|
|
double rotation_matrix[9];
|
|
AngleAxisToRotationMatrix(angle_axis, rotation_matrix);
|
|
|
|
double angle_axis_round_trip[3];
|
|
RotationMatrixToAngleAxis(rotation_matrix, angle_axis_round_trip);
|
|
EXPECT_THAT(angle_axis_round_trip, IsNearAngleAxis(angle_axis));
|
|
}
|
|
|
|
TEST(RotationMatrixToAngleAxis, ExhaustiveRoundTrip) {
|
|
const double kMaxSmallAngle = 1e-8;
|
|
const int kNumSteps = 1000;
|
|
for (int i = 0; i < kNumSteps; ++i) {
|
|
const double theta = static_cast<double>(i) / kNumSteps * 2.0 * kPi;
|
|
for (int j = 0; j < kNumSteps; ++j) {
|
|
const double phi = static_cast<double>(j) / kNumSteps * kPi;
|
|
// Rotations of angle Pi.
|
|
CheckRotationMatrixToAngleAxisRoundTrip(theta, phi, kPi);
|
|
// Rotation of angle approximately Pi.
|
|
CheckRotationMatrixToAngleAxisRoundTrip(
|
|
theta, phi, kPi - kMaxSmallAngle * RandDouble());
|
|
// Rotations of angle approximately zero.
|
|
CheckRotationMatrixToAngleAxisRoundTrip(
|
|
theta, phi, kMaxSmallAngle * 2.0 * RandDouble() - 1.0);
|
|
}
|
|
}
|
|
}
|
|
|
|
} // namespace internal
|
|
} // namespace ceres
|