234 lines
9.9 KiB
C++
234 lines
9.9 KiB
C++
// Ceres Solver - A fast non-linear least squares minimizer
|
|
// Copyright 2015 Google Inc. All rights reserved.
|
|
// http://ceres-solver.org/
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
// * Neither the name of Google Inc. nor the names of its contributors may be
|
|
// used to endorse or promote products derived from this software without
|
|
// specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
|
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
// POSSIBILITY OF SUCH DAMAGE.
|
|
//
|
|
// Author: sameeragarwal@google.com (Sameer Agarwal)
|
|
//
|
|
// Preconditioners for linear systems that arise in Structure from
|
|
// Motion problems. VisibilityBasedPreconditioner implements:
|
|
//
|
|
// CLUSTER_JACOBI
|
|
// CLUSTER_TRIDIAGONAL
|
|
//
|
|
// Detailed descriptions of these preconditions beyond what is
|
|
// documented here can be found in
|
|
//
|
|
// Visibility Based Preconditioning for Bundle Adjustment
|
|
// A. Kushal & S. Agarwal, CVPR 2012.
|
|
//
|
|
// http://www.cs.washington.edu/homes/sagarwal/vbp.pdf
|
|
//
|
|
// The two preconditioners share enough code that its most efficient
|
|
// to implement them as part of the same code base.
|
|
|
|
#ifndef CERES_INTERNAL_VISIBILITY_BASED_PRECONDITIONER_H_
|
|
#define CERES_INTERNAL_VISIBILITY_BASED_PRECONDITIONER_H_
|
|
|
|
#include <set>
|
|
#include <vector>
|
|
#include <utility>
|
|
#include "ceres/collections_port.h"
|
|
#include "ceres/graph.h"
|
|
#include "ceres/internal/macros.h"
|
|
#include "ceres/internal/scoped_ptr.h"
|
|
#include "ceres/linear_solver.h"
|
|
#include "ceres/preconditioner.h"
|
|
#include "ceres/suitesparse.h"
|
|
|
|
namespace ceres {
|
|
namespace internal {
|
|
|
|
class BlockRandomAccessSparseMatrix;
|
|
class BlockSparseMatrix;
|
|
struct CompressedRowBlockStructure;
|
|
class SchurEliminatorBase;
|
|
|
|
// This class implements visibility based preconditioners for
|
|
// Structure from Motion/Bundle Adjustment problems. The name
|
|
// VisibilityBasedPreconditioner comes from the fact that the sparsity
|
|
// structure of the preconditioner matrix is determined by analyzing
|
|
// the visibility structure of the scene, i.e. which cameras see which
|
|
// points.
|
|
//
|
|
// The key idea of visibility based preconditioning is to identify
|
|
// cameras that we expect have strong interactions, and then using the
|
|
// entries in the Schur complement matrix corresponding to these
|
|
// camera pairs as an approximation to the full Schur complement.
|
|
//
|
|
// CLUSTER_JACOBI identifies these camera pairs by clustering cameras,
|
|
// and considering all non-zero camera pairs within each cluster. The
|
|
// clustering in the current implementation is done using the
|
|
// Canonical Views algorithm of Simon et al. (see
|
|
// canonical_views_clustering.h). For the purposes of clustering, the
|
|
// similarity or the degree of interaction between a pair of cameras
|
|
// is measured by counting the number of points visible in both the
|
|
// cameras. Thus the name VisibilityBasedPreconditioner. Further, if we
|
|
// were to permute the parameter blocks such that all the cameras in
|
|
// the same cluster occur contiguously, the preconditioner matrix will
|
|
// be a block diagonal matrix with blocks corresponding to the
|
|
// clusters. Thus in analogy with the Jacobi preconditioner we refer
|
|
// to this as the CLUSTER_JACOBI preconditioner.
|
|
//
|
|
// CLUSTER_TRIDIAGONAL adds more mass to the CLUSTER_JACOBI
|
|
// preconditioner by considering the interaction between clusters and
|
|
// identifying strong interactions between cluster pairs. This is done
|
|
// by constructing a weighted graph on the clusters, with the weight
|
|
// on the edges connecting two clusters proportional to the number of
|
|
// 3D points visible to cameras in both the clusters. A degree-2
|
|
// maximum spanning forest is identified in this graph and the camera
|
|
// pairs contained in the edges of this forest are added to the
|
|
// preconditioner. The detailed reasoning for this construction is
|
|
// explained in the paper mentioned above.
|
|
//
|
|
// Degree-2 spanning trees and forests have the property that they
|
|
// correspond to tri-diagonal matrices. Thus there exist a permutation
|
|
// of the camera blocks under which the CLUSTER_TRIDIAGONAL
|
|
// preconditioner matrix is a block tridiagonal matrix, and thus the
|
|
// name for the preconditioner.
|
|
//
|
|
// Thread Safety: This class is NOT thread safe.
|
|
//
|
|
// Example usage:
|
|
//
|
|
// LinearSolver::Options options;
|
|
// options.preconditioner_type = CLUSTER_JACOBI;
|
|
// options.elimination_groups.push_back(num_points);
|
|
// options.elimination_groups.push_back(num_cameras);
|
|
// VisibilityBasedPreconditioner preconditioner(
|
|
// *A.block_structure(), options);
|
|
// preconditioner.Update(A, NULL);
|
|
// preconditioner.RightMultiply(x, y);
|
|
//
|
|
#ifndef CERES_NO_SUITESPARSE
|
|
class VisibilityBasedPreconditioner : public BlockSparseMatrixPreconditioner {
|
|
public:
|
|
// Initialize the symbolic structure of the preconditioner. bs is
|
|
// the block structure of the linear system to be solved. It is used
|
|
// to determine the sparsity structure of the preconditioner matrix.
|
|
//
|
|
// It has the same structural requirement as other Schur complement
|
|
// based solvers. Please see schur_eliminator.h for more details.
|
|
VisibilityBasedPreconditioner(const CompressedRowBlockStructure& bs,
|
|
const Preconditioner::Options& options);
|
|
virtual ~VisibilityBasedPreconditioner();
|
|
|
|
// Preconditioner interface
|
|
virtual void RightMultiply(const double* x, double* y) const;
|
|
virtual int num_rows() const;
|
|
|
|
friend class VisibilityBasedPreconditionerTest;
|
|
|
|
private:
|
|
virtual bool UpdateImpl(const BlockSparseMatrix& A, const double* D);
|
|
void ComputeClusterJacobiSparsity(const CompressedRowBlockStructure& bs);
|
|
void ComputeClusterTridiagonalSparsity(const CompressedRowBlockStructure& bs);
|
|
void InitStorage(const CompressedRowBlockStructure& bs);
|
|
void InitEliminator(const CompressedRowBlockStructure& bs);
|
|
LinearSolverTerminationType Factorize();
|
|
void ScaleOffDiagonalCells();
|
|
|
|
void ClusterCameras(const std::vector<std::set<int> >& visibility);
|
|
void FlattenMembershipMap(const HashMap<int, int>& membership_map,
|
|
std::vector<int>* membership_vector) const;
|
|
void ComputeClusterVisibility(
|
|
const std::vector<std::set<int> >& visibility,
|
|
std::vector<std::set<int> >* cluster_visibility) const;
|
|
WeightedGraph<int>* CreateClusterGraph(
|
|
const std::vector<std::set<int> >& visibility) const;
|
|
void ForestToClusterPairs(const WeightedGraph<int>& forest,
|
|
HashSet<std::pair<int, int> >* cluster_pairs) const;
|
|
void ComputeBlockPairsInPreconditioner(const CompressedRowBlockStructure& bs);
|
|
bool IsBlockPairInPreconditioner(int block1, int block2) const;
|
|
bool IsBlockPairOffDiagonal(int block1, int block2) const;
|
|
|
|
Preconditioner::Options options_;
|
|
|
|
// Number of parameter blocks in the schur complement.
|
|
int num_blocks_;
|
|
int num_clusters_;
|
|
|
|
// Sizes of the blocks in the schur complement.
|
|
std::vector<int> block_size_;
|
|
|
|
// Mapping from cameras to clusters.
|
|
std::vector<int> cluster_membership_;
|
|
|
|
// Non-zero camera pairs from the schur complement matrix that are
|
|
// present in the preconditioner, sorted by row (first element of
|
|
// each pair), then column (second).
|
|
std::set<std::pair<int, int> > block_pairs_;
|
|
|
|
// Set of cluster pairs (including self pairs (i,i)) in the
|
|
// preconditioner.
|
|
HashSet<std::pair<int, int> > cluster_pairs_;
|
|
scoped_ptr<SchurEliminatorBase> eliminator_;
|
|
|
|
// Preconditioner matrix.
|
|
scoped_ptr<BlockRandomAccessSparseMatrix> m_;
|
|
|
|
// RightMultiply is a const method for LinearOperators. It is
|
|
// implemented using CHOLMOD's sparse triangular matrix solve
|
|
// function. This however requires non-const access to the
|
|
// SuiteSparse context object, even though it does not result in any
|
|
// of the state of the preconditioner being modified.
|
|
SuiteSparse ss_;
|
|
|
|
// Symbolic and numeric factorization of the preconditioner.
|
|
cholmod_factor* factor_;
|
|
|
|
// Temporary vector used by RightMultiply.
|
|
cholmod_dense* tmp_rhs_;
|
|
CERES_DISALLOW_COPY_AND_ASSIGN(VisibilityBasedPreconditioner);
|
|
};
|
|
#else // SuiteSparse
|
|
// If SuiteSparse is not compiled in, the preconditioner is not
|
|
// available.
|
|
class VisibilityBasedPreconditioner : public BlockSparseMatrixPreconditioner {
|
|
public:
|
|
VisibilityBasedPreconditioner(const CompressedRowBlockStructure& bs,
|
|
const Preconditioner::Options& options) {
|
|
LOG(FATAL) << "Visibility based preconditioning is not available. Please "
|
|
"build Ceres with SuiteSparse.";
|
|
}
|
|
virtual ~VisibilityBasedPreconditioner() {}
|
|
virtual void RightMultiply(const double* x, double* y) const {}
|
|
virtual void LeftMultiply(const double* x, double* y) const {}
|
|
virtual int num_rows() const { return -1; }
|
|
virtual int num_cols() const { return -1; }
|
|
|
|
private:
|
|
bool UpdateImpl(const BlockSparseMatrix& A, const double* D) {
|
|
return false;
|
|
}
|
|
};
|
|
#endif // CERES_NO_SUITESPARSE
|
|
|
|
} // namespace internal
|
|
} // namespace ceres
|
|
|
|
#endif // CERES_INTERNAL_VISIBILITY_BASED_PRECONDITIONER_H_
|