339 lines
12 KiB
C++
339 lines
12 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2012 Desire Nuentsa <desire.nuentsa_wakam@inria.fr>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#ifndef EIGEN_SUITESPARSEQRSUPPORT_H
|
|
#define EIGEN_SUITESPARSEQRSUPPORT_H
|
|
|
|
namespace Eigen {
|
|
|
|
template<typename MatrixType> class SPQR;
|
|
template<typename SPQRType> struct SPQRMatrixQReturnType;
|
|
template<typename SPQRType> struct SPQRMatrixQTransposeReturnType;
|
|
template <typename SPQRType, typename Derived> struct SPQR_QProduct;
|
|
namespace internal {
|
|
template <typename SPQRType> struct traits<SPQRMatrixQReturnType<SPQRType> >
|
|
{
|
|
typedef typename SPQRType::MatrixType ReturnType;
|
|
};
|
|
template <typename SPQRType> struct traits<SPQRMatrixQTransposeReturnType<SPQRType> >
|
|
{
|
|
typedef typename SPQRType::MatrixType ReturnType;
|
|
};
|
|
template <typename SPQRType, typename Derived> struct traits<SPQR_QProduct<SPQRType, Derived> >
|
|
{
|
|
typedef typename Derived::PlainObject ReturnType;
|
|
};
|
|
} // End namespace internal
|
|
|
|
/**
|
|
* \ingroup SPQRSupport_Module
|
|
* \class SPQR
|
|
* \brief Sparse QR factorization based on SuiteSparseQR library
|
|
*
|
|
* This class is used to perform a multithreaded and multifrontal rank-revealing QR decomposition
|
|
* of sparse matrices. The result is then used to solve linear leasts_square systems.
|
|
* Clearly, a QR factorization is returned such that A*P = Q*R where :
|
|
*
|
|
* P is the column permutation. Use colsPermutation() to get it.
|
|
*
|
|
* Q is the orthogonal matrix represented as Householder reflectors.
|
|
* Use matrixQ() to get an expression and matrixQ().transpose() to get the transpose.
|
|
* You can then apply it to a vector.
|
|
*
|
|
* R is the sparse triangular factor. Use matrixQR() to get it as SparseMatrix.
|
|
* NOTE : The Index type of R is always SuiteSparse_long. You can get it with SPQR::Index
|
|
*
|
|
* \tparam _MatrixType The type of the sparse matrix A, must be a column-major SparseMatrix<>
|
|
* NOTE
|
|
*
|
|
*/
|
|
template<typename _MatrixType>
|
|
class SPQR
|
|
{
|
|
public:
|
|
typedef typename _MatrixType::Scalar Scalar;
|
|
typedef typename _MatrixType::RealScalar RealScalar;
|
|
typedef SuiteSparse_long Index ;
|
|
typedef SparseMatrix<Scalar, ColMajor, Index> MatrixType;
|
|
typedef PermutationMatrix<Dynamic, Dynamic> PermutationType;
|
|
public:
|
|
SPQR()
|
|
: m_isInitialized(false), m_ordering(SPQR_ORDERING_DEFAULT), m_allow_tol(SPQR_DEFAULT_TOL), m_tolerance (NumTraits<Scalar>::epsilon()), m_useDefaultThreshold(true)
|
|
{
|
|
cholmod_l_start(&m_cc);
|
|
}
|
|
|
|
SPQR(const _MatrixType& matrix)
|
|
: m_isInitialized(false), m_ordering(SPQR_ORDERING_DEFAULT), m_allow_tol(SPQR_DEFAULT_TOL), m_tolerance (NumTraits<Scalar>::epsilon()), m_useDefaultThreshold(true)
|
|
{
|
|
cholmod_l_start(&m_cc);
|
|
compute(matrix);
|
|
}
|
|
|
|
~SPQR()
|
|
{
|
|
SPQR_free();
|
|
cholmod_l_finish(&m_cc);
|
|
}
|
|
void SPQR_free()
|
|
{
|
|
cholmod_l_free_sparse(&m_H, &m_cc);
|
|
cholmod_l_free_sparse(&m_cR, &m_cc);
|
|
cholmod_l_free_dense(&m_HTau, &m_cc);
|
|
std::free(m_E);
|
|
std::free(m_HPinv);
|
|
}
|
|
|
|
void compute(const _MatrixType& matrix)
|
|
{
|
|
if(m_isInitialized) SPQR_free();
|
|
|
|
MatrixType mat(matrix);
|
|
|
|
/* Compute the default threshold as in MatLab, see:
|
|
* Tim Davis, "Algorithm 915, SuiteSparseQR: Multifrontal Multithreaded Rank-Revealing
|
|
* Sparse QR Factorization, ACM Trans. on Math. Soft. 38(1), 2011, Page 8:3
|
|
*/
|
|
RealScalar pivotThreshold = m_tolerance;
|
|
if(m_useDefaultThreshold)
|
|
{
|
|
using std::max;
|
|
RealScalar max2Norm = 0.0;
|
|
for (int j = 0; j < mat.cols(); j++) max2Norm = (max)(max2Norm, mat.col(j).norm());
|
|
if(max2Norm==RealScalar(0))
|
|
max2Norm = RealScalar(1);
|
|
pivotThreshold = 20 * (mat.rows() + mat.cols()) * max2Norm * NumTraits<RealScalar>::epsilon();
|
|
}
|
|
|
|
cholmod_sparse A;
|
|
A = viewAsCholmod(mat);
|
|
Index col = matrix.cols();
|
|
m_rank = SuiteSparseQR<Scalar>(m_ordering, pivotThreshold, col, &A,
|
|
&m_cR, &m_E, &m_H, &m_HPinv, &m_HTau, &m_cc);
|
|
|
|
if (!m_cR)
|
|
{
|
|
m_info = NumericalIssue;
|
|
m_isInitialized = false;
|
|
return;
|
|
}
|
|
m_info = Success;
|
|
m_isInitialized = true;
|
|
m_isRUpToDate = false;
|
|
}
|
|
/**
|
|
* Get the number of rows of the input matrix and the Q matrix
|
|
*/
|
|
inline Index rows() const {return m_cR->nrow; }
|
|
|
|
/**
|
|
* Get the number of columns of the input matrix.
|
|
*/
|
|
inline Index cols() const { return m_cR->ncol; }
|
|
|
|
/** \returns the solution X of \f$ A X = B \f$ using the current decomposition of A.
|
|
*
|
|
* \sa compute()
|
|
*/
|
|
template<typename Rhs>
|
|
inline const internal::solve_retval<SPQR, Rhs> solve(const MatrixBase<Rhs>& B) const
|
|
{
|
|
eigen_assert(m_isInitialized && " The QR factorization should be computed first, call compute()");
|
|
eigen_assert(this->rows()==B.rows()
|
|
&& "SPQR::solve(): invalid number of rows of the right hand side matrix B");
|
|
return internal::solve_retval<SPQR, Rhs>(*this, B.derived());
|
|
}
|
|
|
|
template<typename Rhs, typename Dest>
|
|
void _solve(const MatrixBase<Rhs> &b, MatrixBase<Dest> &dest) const
|
|
{
|
|
eigen_assert(m_isInitialized && " The QR factorization should be computed first, call compute()");
|
|
eigen_assert(b.cols()==1 && "This method is for vectors only");
|
|
|
|
//Compute Q^T * b
|
|
typename Dest::PlainObject y, y2;
|
|
y = matrixQ().transpose() * b;
|
|
|
|
// Solves with the triangular matrix R
|
|
Index rk = this->rank();
|
|
y2 = y;
|
|
y.resize((std::max)(cols(),Index(y.rows())),y.cols());
|
|
y.topRows(rk) = this->matrixR().topLeftCorner(rk, rk).template triangularView<Upper>().solve(y2.topRows(rk));
|
|
|
|
// Apply the column permutation
|
|
// colsPermutation() performs a copy of the permutation,
|
|
// so let's apply it manually:
|
|
for(Index i = 0; i < rk; ++i) dest.row(m_E[i]) = y.row(i);
|
|
for(Index i = rk; i < cols(); ++i) dest.row(m_E[i]).setZero();
|
|
|
|
// y.bottomRows(y.rows()-rk).setZero();
|
|
// dest = colsPermutation() * y.topRows(cols());
|
|
|
|
m_info = Success;
|
|
}
|
|
|
|
/** \returns the sparse triangular factor R. It is a sparse matrix
|
|
*/
|
|
const MatrixType matrixR() const
|
|
{
|
|
eigen_assert(m_isInitialized && " The QR factorization should be computed first, call compute()");
|
|
if(!m_isRUpToDate) {
|
|
m_R = viewAsEigen<Scalar,ColMajor, typename MatrixType::Index>(*m_cR);
|
|
m_isRUpToDate = true;
|
|
}
|
|
return m_R;
|
|
}
|
|
/// Get an expression of the matrix Q
|
|
SPQRMatrixQReturnType<SPQR> matrixQ() const
|
|
{
|
|
return SPQRMatrixQReturnType<SPQR>(*this);
|
|
}
|
|
/// Get the permutation that was applied to columns of A
|
|
PermutationType colsPermutation() const
|
|
{
|
|
eigen_assert(m_isInitialized && "Decomposition is not initialized.");
|
|
Index n = m_cR->ncol;
|
|
PermutationType colsPerm(n);
|
|
for(Index j = 0; j <n; j++) colsPerm.indices()(j) = m_E[j];
|
|
return colsPerm;
|
|
|
|
}
|
|
/**
|
|
* Gets the rank of the matrix.
|
|
* It should be equal to matrixQR().cols if the matrix is full-rank
|
|
*/
|
|
Index rank() const
|
|
{
|
|
eigen_assert(m_isInitialized && "Decomposition is not initialized.");
|
|
return m_cc.SPQR_istat[4];
|
|
}
|
|
/// Set the fill-reducing ordering method to be used
|
|
void setSPQROrdering(int ord) { m_ordering = ord;}
|
|
/// Set the tolerance tol to treat columns with 2-norm < =tol as zero
|
|
void setPivotThreshold(const RealScalar& tol)
|
|
{
|
|
m_useDefaultThreshold = false;
|
|
m_tolerance = tol;
|
|
}
|
|
|
|
/** \returns a pointer to the SPQR workspace */
|
|
cholmod_common *cholmodCommon() const { return &m_cc; }
|
|
|
|
|
|
/** \brief Reports whether previous computation was successful.
|
|
*
|
|
* \returns \c Success if computation was succesful,
|
|
* \c NumericalIssue if the sparse QR can not be computed
|
|
*/
|
|
ComputationInfo info() const
|
|
{
|
|
eigen_assert(m_isInitialized && "Decomposition is not initialized.");
|
|
return m_info;
|
|
}
|
|
protected:
|
|
bool m_isInitialized;
|
|
bool m_analysisIsOk;
|
|
bool m_factorizationIsOk;
|
|
mutable bool m_isRUpToDate;
|
|
mutable ComputationInfo m_info;
|
|
int m_ordering; // Ordering method to use, see SPQR's manual
|
|
int m_allow_tol; // Allow to use some tolerance during numerical factorization.
|
|
RealScalar m_tolerance; // treat columns with 2-norm below this tolerance as zero
|
|
mutable cholmod_sparse *m_cR; // The sparse R factor in cholmod format
|
|
mutable MatrixType m_R; // The sparse matrix R in Eigen format
|
|
mutable Index *m_E; // The permutation applied to columns
|
|
mutable cholmod_sparse *m_H; //The householder vectors
|
|
mutable Index *m_HPinv; // The row permutation of H
|
|
mutable cholmod_dense *m_HTau; // The Householder coefficients
|
|
mutable Index m_rank; // The rank of the matrix
|
|
mutable cholmod_common m_cc; // Workspace and parameters
|
|
bool m_useDefaultThreshold; // Use default threshold
|
|
template<typename ,typename > friend struct SPQR_QProduct;
|
|
};
|
|
|
|
template <typename SPQRType, typename Derived>
|
|
struct SPQR_QProduct : ReturnByValue<SPQR_QProduct<SPQRType,Derived> >
|
|
{
|
|
typedef typename SPQRType::Scalar Scalar;
|
|
typedef typename SPQRType::Index Index;
|
|
//Define the constructor to get reference to argument types
|
|
SPQR_QProduct(const SPQRType& spqr, const Derived& other, bool transpose) : m_spqr(spqr),m_other(other),m_transpose(transpose) {}
|
|
|
|
inline Index rows() const { return m_transpose ? m_spqr.rows() : m_spqr.cols(); }
|
|
inline Index cols() const { return m_other.cols(); }
|
|
// Assign to a vector
|
|
template<typename ResType>
|
|
void evalTo(ResType& res) const
|
|
{
|
|
cholmod_dense y_cd;
|
|
cholmod_dense *x_cd;
|
|
int method = m_transpose ? SPQR_QTX : SPQR_QX;
|
|
cholmod_common *cc = m_spqr.cholmodCommon();
|
|
y_cd = viewAsCholmod(m_other.const_cast_derived());
|
|
x_cd = SuiteSparseQR_qmult<Scalar>(method, m_spqr.m_H, m_spqr.m_HTau, m_spqr.m_HPinv, &y_cd, cc);
|
|
res = Matrix<Scalar,ResType::RowsAtCompileTime,ResType::ColsAtCompileTime>::Map(reinterpret_cast<Scalar*>(x_cd->x), x_cd->nrow, x_cd->ncol);
|
|
cholmod_l_free_dense(&x_cd, cc);
|
|
}
|
|
const SPQRType& m_spqr;
|
|
const Derived& m_other;
|
|
bool m_transpose;
|
|
|
|
};
|
|
template<typename SPQRType>
|
|
struct SPQRMatrixQReturnType{
|
|
|
|
SPQRMatrixQReturnType(const SPQRType& spqr) : m_spqr(spqr) {}
|
|
template<typename Derived>
|
|
SPQR_QProduct<SPQRType, Derived> operator*(const MatrixBase<Derived>& other)
|
|
{
|
|
return SPQR_QProduct<SPQRType,Derived>(m_spqr,other.derived(),false);
|
|
}
|
|
SPQRMatrixQTransposeReturnType<SPQRType> adjoint() const
|
|
{
|
|
return SPQRMatrixQTransposeReturnType<SPQRType>(m_spqr);
|
|
}
|
|
// To use for operations with the transpose of Q
|
|
SPQRMatrixQTransposeReturnType<SPQRType> transpose() const
|
|
{
|
|
return SPQRMatrixQTransposeReturnType<SPQRType>(m_spqr);
|
|
}
|
|
const SPQRType& m_spqr;
|
|
};
|
|
|
|
template<typename SPQRType>
|
|
struct SPQRMatrixQTransposeReturnType{
|
|
SPQRMatrixQTransposeReturnType(const SPQRType& spqr) : m_spqr(spqr) {}
|
|
template<typename Derived>
|
|
SPQR_QProduct<SPQRType,Derived> operator*(const MatrixBase<Derived>& other)
|
|
{
|
|
return SPQR_QProduct<SPQRType,Derived>(m_spqr,other.derived(), true);
|
|
}
|
|
const SPQRType& m_spqr;
|
|
};
|
|
|
|
namespace internal {
|
|
|
|
template<typename _MatrixType, typename Rhs>
|
|
struct solve_retval<SPQR<_MatrixType>, Rhs>
|
|
: solve_retval_base<SPQR<_MatrixType>, Rhs>
|
|
{
|
|
typedef SPQR<_MatrixType> Dec;
|
|
EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
|
|
|
|
template<typename Dest> void evalTo(Dest& dst) const
|
|
{
|
|
dec()._solve(rhs(),dst);
|
|
}
|
|
};
|
|
|
|
} // end namespace internal
|
|
|
|
}// End namespace Eigen
|
|
#endif
|