227 lines
8.1 KiB
C++
227 lines
8.1 KiB
C++
// Ceres Solver - A fast non-linear least squares minimizer
|
|
// Copyright 2015 Google Inc. All rights reserved.
|
|
// http://ceres-solver.org/
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
// * Neither the name of Google Inc. nor the names of its contributors may be
|
|
// used to endorse or promote products derived from this software without
|
|
// specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
|
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
// POSSIBILITY OF SUCH DAMAGE.
|
|
//
|
|
// Author: sameeragarwal@google.com (Sameer Agarwal)
|
|
|
|
#include "ceres/schur_eliminator.h"
|
|
|
|
#include "Eigen/Dense"
|
|
#include "ceres/block_random_access_dense_matrix.h"
|
|
#include "ceres/block_sparse_matrix.h"
|
|
#include "ceres/casts.h"
|
|
#include "ceres/detect_structure.h"
|
|
#include "ceres/internal/eigen.h"
|
|
#include "ceres/internal/scoped_ptr.h"
|
|
#include "ceres/linear_least_squares_problems.h"
|
|
#include "ceres/test_util.h"
|
|
#include "ceres/triplet_sparse_matrix.h"
|
|
#include "ceres/types.h"
|
|
#include "glog/logging.h"
|
|
#include "gtest/gtest.h"
|
|
|
|
// TODO(sameeragarwal): Reduce the size of these tests and redo the
|
|
// parameterization to be more efficient.
|
|
|
|
namespace ceres {
|
|
namespace internal {
|
|
|
|
class SchurEliminatorTest : public ::testing::Test {
|
|
protected:
|
|
void SetUpFromId(int id) {
|
|
scoped_ptr<LinearLeastSquaresProblem>
|
|
problem(CreateLinearLeastSquaresProblemFromId(id));
|
|
CHECK_NOTNULL(problem.get());
|
|
SetupHelper(problem.get());
|
|
}
|
|
|
|
void SetupHelper(LinearLeastSquaresProblem* problem) {
|
|
A.reset(down_cast<BlockSparseMatrix*>(problem->A.release()));
|
|
b.reset(problem->b.release());
|
|
D.reset(problem->D.release());
|
|
|
|
num_eliminate_blocks = problem->num_eliminate_blocks;
|
|
num_eliminate_cols = 0;
|
|
const CompressedRowBlockStructure* bs = A->block_structure();
|
|
|
|
for (int i = 0; i < num_eliminate_blocks; ++i) {
|
|
num_eliminate_cols += bs->cols[i].size;
|
|
}
|
|
}
|
|
|
|
// Compute the golden values for the reduced linear system and the
|
|
// solution to the linear least squares problem using dense linear
|
|
// algebra.
|
|
void ComputeReferenceSolution(const Vector& D) {
|
|
Matrix J;
|
|
A->ToDenseMatrix(&J);
|
|
VectorRef f(b.get(), J.rows());
|
|
|
|
Matrix H = (D.cwiseProduct(D)).asDiagonal();
|
|
H.noalias() += J.transpose() * J;
|
|
|
|
const Vector g = J.transpose() * f;
|
|
const int schur_size = J.cols() - num_eliminate_cols;
|
|
|
|
lhs_expected.resize(schur_size, schur_size);
|
|
lhs_expected.setZero();
|
|
|
|
rhs_expected.resize(schur_size);
|
|
rhs_expected.setZero();
|
|
|
|
sol_expected.resize(J.cols());
|
|
sol_expected.setZero();
|
|
|
|
Matrix P = H.block(0, 0, num_eliminate_cols, num_eliminate_cols);
|
|
Matrix Q = H.block(0,
|
|
num_eliminate_cols,
|
|
num_eliminate_cols,
|
|
schur_size);
|
|
Matrix R = H.block(num_eliminate_cols,
|
|
num_eliminate_cols,
|
|
schur_size,
|
|
schur_size);
|
|
int row = 0;
|
|
const CompressedRowBlockStructure* bs = A->block_structure();
|
|
for (int i = 0; i < num_eliminate_blocks; ++i) {
|
|
const int block_size = bs->cols[i].size;
|
|
P.block(row, row, block_size, block_size) =
|
|
P
|
|
.block(row, row, block_size, block_size)
|
|
.llt()
|
|
.solve(Matrix::Identity(block_size, block_size));
|
|
row += block_size;
|
|
}
|
|
|
|
lhs_expected
|
|
.triangularView<Eigen::Upper>() = R - Q.transpose() * P * Q;
|
|
rhs_expected =
|
|
g.tail(schur_size) - Q.transpose() * P * g.head(num_eliminate_cols);
|
|
sol_expected = H.llt().solve(g);
|
|
}
|
|
|
|
void EliminateSolveAndCompare(const VectorRef& diagonal,
|
|
bool use_static_structure,
|
|
const double relative_tolerance) {
|
|
const CompressedRowBlockStructure* bs = A->block_structure();
|
|
const int num_col_blocks = bs->cols.size();
|
|
std::vector<int> blocks(num_col_blocks - num_eliminate_blocks, 0);
|
|
for (int i = num_eliminate_blocks; i < num_col_blocks; ++i) {
|
|
blocks[i - num_eliminate_blocks] = bs->cols[i].size;
|
|
}
|
|
|
|
BlockRandomAccessDenseMatrix lhs(blocks);
|
|
|
|
const int num_cols = A->num_cols();
|
|
const int schur_size = lhs.num_rows();
|
|
|
|
Vector rhs(schur_size);
|
|
|
|
LinearSolver::Options options;
|
|
options.elimination_groups.push_back(num_eliminate_blocks);
|
|
if (use_static_structure) {
|
|
DetectStructure(*bs,
|
|
num_eliminate_blocks,
|
|
&options.row_block_size,
|
|
&options.e_block_size,
|
|
&options.f_block_size);
|
|
}
|
|
|
|
scoped_ptr<SchurEliminatorBase> eliminator;
|
|
eliminator.reset(SchurEliminatorBase::Create(options));
|
|
eliminator->Init(num_eliminate_blocks, A->block_structure());
|
|
eliminator->Eliminate(A.get(), b.get(), diagonal.data(), &lhs, rhs.data());
|
|
|
|
MatrixRef lhs_ref(lhs.mutable_values(), lhs.num_rows(), lhs.num_cols());
|
|
Vector reduced_sol =
|
|
lhs_ref
|
|
.selfadjointView<Eigen::Upper>()
|
|
.llt()
|
|
.solve(rhs);
|
|
|
|
// Solution to the linear least squares problem.
|
|
Vector sol(num_cols);
|
|
sol.setZero();
|
|
sol.tail(schur_size) = reduced_sol;
|
|
eliminator->BackSubstitute(A.get(),
|
|
b.get(),
|
|
diagonal.data(),
|
|
reduced_sol.data(),
|
|
sol.data());
|
|
|
|
Matrix delta = (lhs_ref - lhs_expected).selfadjointView<Eigen::Upper>();
|
|
double diff = delta.norm();
|
|
EXPECT_NEAR(diff / lhs_expected.norm(), 0.0, relative_tolerance);
|
|
EXPECT_NEAR((rhs - rhs_expected).norm() / rhs_expected.norm(), 0.0,
|
|
relative_tolerance);
|
|
EXPECT_NEAR((sol - sol_expected).norm() / sol_expected.norm(), 0.0,
|
|
relative_tolerance);
|
|
}
|
|
|
|
scoped_ptr<BlockSparseMatrix> A;
|
|
scoped_array<double> b;
|
|
scoped_array<double> D;
|
|
int num_eliminate_blocks;
|
|
int num_eliminate_cols;
|
|
|
|
Matrix lhs_expected;
|
|
Vector rhs_expected;
|
|
Vector sol_expected;
|
|
};
|
|
|
|
TEST_F(SchurEliminatorTest, ScalarProblemNoRegularization) {
|
|
SetUpFromId(2);
|
|
Vector zero(A->num_cols());
|
|
zero.setZero();
|
|
|
|
ComputeReferenceSolution(VectorRef(zero.data(), A->num_cols()));
|
|
EliminateSolveAndCompare(VectorRef(zero.data(), A->num_cols()), true, 1e-14);
|
|
EliminateSolveAndCompare(VectorRef(zero.data(), A->num_cols()), false, 1e-14);
|
|
}
|
|
|
|
TEST_F(SchurEliminatorTest, ScalarProblemWithRegularization) {
|
|
SetUpFromId(2);
|
|
ComputeReferenceSolution(VectorRef(D.get(), A->num_cols()));
|
|
EliminateSolveAndCompare(VectorRef(D.get(), A->num_cols()), true, 1e-14);
|
|
EliminateSolveAndCompare(VectorRef(D.get(), A->num_cols()), false, 1e-14);
|
|
}
|
|
|
|
TEST_F(SchurEliminatorTest, VaryingFBlockSizeWithStaticStructure) {
|
|
SetUpFromId(4);
|
|
ComputeReferenceSolution(VectorRef(D.get(), A->num_cols()));
|
|
EliminateSolveAndCompare(VectorRef(D.get(), A->num_cols()), true, 1e-14);
|
|
}
|
|
|
|
TEST_F(SchurEliminatorTest, VaryingFBlockSizeWithoutStaticStructure) {
|
|
SetUpFromId(4);
|
|
ComputeReferenceSolution(VectorRef(D.get(), A->num_cols()));
|
|
EliminateSolveAndCompare(VectorRef(D.get(), A->num_cols()), false, 1e-14);
|
|
}
|
|
|
|
} // namespace internal
|
|
} // namespace ceres
|