358 lines
14 KiB
C++
358 lines
14 KiB
C++
// Ceres Solver - A fast non-linear least squares minimizer
|
||
// Copyright 2015 Google Inc. All rights reserved.
|
||
// http://ceres-solver.org/
|
||
//
|
||
// Redistribution and use in source and binary forms, with or without
|
||
// modification, are permitted provided that the following conditions are met:
|
||
//
|
||
// * Redistributions of source code must retain the above copyright notice,
|
||
// this list of conditions and the following disclaimer.
|
||
// * Redistributions in binary form must reproduce the above copyright notice,
|
||
// this list of conditions and the following disclaimer in the documentation
|
||
// and/or other materials provided with the distribution.
|
||
// * Neither the name of Google Inc. nor the names of its contributors may be
|
||
// used to endorse or promote products derived from this software without
|
||
// specific prior written permission.
|
||
//
|
||
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
||
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
||
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
||
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||
// POSSIBILITY OF SUCH DAMAGE.
|
||
//
|
||
// Author: sameeragarwal@google.com (Sameer Agarwal)
|
||
|
||
#ifndef CERES_PUBLIC_GRADIENT_PROBLEM_SOLVER_H_
|
||
#define CERES_PUBLIC_GRADIENT_PROBLEM_SOLVER_H_
|
||
|
||
#include <cmath>
|
||
#include <string>
|
||
#include <vector>
|
||
#include "ceres/internal/macros.h"
|
||
#include "ceres/internal/port.h"
|
||
#include "ceres/iteration_callback.h"
|
||
#include "ceres/types.h"
|
||
#include "ceres/internal/disable_warnings.h"
|
||
|
||
namespace ceres {
|
||
|
||
class GradientProblem;
|
||
|
||
class CERES_EXPORT GradientProblemSolver {
|
||
public:
|
||
virtual ~GradientProblemSolver();
|
||
|
||
// The options structure contains, not surprisingly, options that control how
|
||
// the solver operates. The defaults should be suitable for a wide range of
|
||
// problems; however, better performance is often obtainable with tweaking.
|
||
//
|
||
// The constants are defined inside types.h
|
||
struct CERES_EXPORT Options {
|
||
// Default constructor that sets up a generic sparse problem.
|
||
Options() {
|
||
line_search_direction_type = LBFGS;
|
||
line_search_type = WOLFE;
|
||
nonlinear_conjugate_gradient_type = FLETCHER_REEVES;
|
||
max_lbfgs_rank = 20;
|
||
use_approximate_eigenvalue_bfgs_scaling = false;
|
||
line_search_interpolation_type = CUBIC;
|
||
min_line_search_step_size = 1e-9;
|
||
line_search_sufficient_function_decrease = 1e-4;
|
||
max_line_search_step_contraction = 1e-3;
|
||
min_line_search_step_contraction = 0.6;
|
||
max_num_line_search_step_size_iterations = 20;
|
||
max_num_line_search_direction_restarts = 5;
|
||
line_search_sufficient_curvature_decrease = 0.9;
|
||
max_line_search_step_expansion = 10.0;
|
||
max_num_iterations = 50;
|
||
max_solver_time_in_seconds = 1e9;
|
||
function_tolerance = 1e-6;
|
||
gradient_tolerance = 1e-10;
|
||
logging_type = PER_MINIMIZER_ITERATION;
|
||
minimizer_progress_to_stdout = false;
|
||
}
|
||
|
||
// Returns true if the options struct has a valid
|
||
// configuration. Returns false otherwise, and fills in *error
|
||
// with a message describing the problem.
|
||
bool IsValid(std::string* error) const;
|
||
|
||
// Minimizer options ----------------------------------------
|
||
LineSearchDirectionType line_search_direction_type;
|
||
LineSearchType line_search_type;
|
||
NonlinearConjugateGradientType nonlinear_conjugate_gradient_type;
|
||
|
||
// The LBFGS hessian approximation is a low rank approximation to
|
||
// the inverse of the Hessian matrix. The rank of the
|
||
// approximation determines (linearly) the space and time
|
||
// complexity of using the approximation. Higher the rank, the
|
||
// better is the quality of the approximation. The increase in
|
||
// quality is however is bounded for a number of reasons.
|
||
//
|
||
// 1. The method only uses secant information and not actual
|
||
// derivatives.
|
||
//
|
||
// 2. The Hessian approximation is constrained to be positive
|
||
// definite.
|
||
//
|
||
// So increasing this rank to a large number will cost time and
|
||
// space complexity without the corresponding increase in solution
|
||
// quality. There are no hard and fast rules for choosing the
|
||
// maximum rank. The best choice usually requires some problem
|
||
// specific experimentation.
|
||
//
|
||
// For more theoretical and implementation details of the LBFGS
|
||
// method, please see:
|
||
//
|
||
// Nocedal, J. (1980). "Updating Quasi-Newton Matrices with
|
||
// Limited Storage". Mathematics of Computation 35 (151): 773–782.
|
||
int max_lbfgs_rank;
|
||
|
||
// As part of the (L)BFGS update step (BFGS) / right-multiply step (L-BFGS),
|
||
// the initial inverse Hessian approximation is taken to be the Identity.
|
||
// However, Oren showed that using instead I * \gamma, where \gamma is
|
||
// chosen to approximate an eigenvalue of the true inverse Hessian can
|
||
// result in improved convergence in a wide variety of cases. Setting
|
||
// use_approximate_eigenvalue_bfgs_scaling to true enables this scaling.
|
||
//
|
||
// It is important to note that approximate eigenvalue scaling does not
|
||
// always improve convergence, and that it can in fact significantly degrade
|
||
// performance for certain classes of problem, which is why it is disabled
|
||
// by default. In particular it can degrade performance when the
|
||
// sensitivity of the problem to different parameters varies significantly,
|
||
// as in this case a single scalar factor fails to capture this variation
|
||
// and detrimentally downscales parts of the jacobian approximation which
|
||
// correspond to low-sensitivity parameters. It can also reduce the
|
||
// robustness of the solution to errors in the jacobians.
|
||
//
|
||
// Oren S.S., Self-scaling variable metric (SSVM) algorithms
|
||
// Part II: Implementation and experiments, Management Science,
|
||
// 20(5), 863-874, 1974.
|
||
bool use_approximate_eigenvalue_bfgs_scaling;
|
||
|
||
// Degree of the polynomial used to approximate the objective
|
||
// function. Valid values are BISECTION, QUADRATIC and CUBIC.
|
||
//
|
||
// BISECTION corresponds to pure backtracking search with no
|
||
// interpolation.
|
||
LineSearchInterpolationType line_search_interpolation_type;
|
||
|
||
// If during the line search, the step_size falls below this
|
||
// value, it is truncated to zero.
|
||
double min_line_search_step_size;
|
||
|
||
// Line search parameters.
|
||
|
||
// Solving the line search problem exactly is computationally
|
||
// prohibitive. Fortunately, line search based optimization
|
||
// algorithms can still guarantee convergence if instead of an
|
||
// exact solution, the line search algorithm returns a solution
|
||
// which decreases the value of the objective function
|
||
// sufficiently. More precisely, we are looking for a step_size
|
||
// s.t.
|
||
//
|
||
// f(step_size) <= f(0) + sufficient_decrease * f'(0) * step_size
|
||
//
|
||
double line_search_sufficient_function_decrease;
|
||
|
||
// In each iteration of the line search,
|
||
//
|
||
// new_step_size >= max_line_search_step_contraction * step_size
|
||
//
|
||
// Note that by definition, for contraction:
|
||
//
|
||
// 0 < max_step_contraction < min_step_contraction < 1
|
||
//
|
||
double max_line_search_step_contraction;
|
||
|
||
// In each iteration of the line search,
|
||
//
|
||
// new_step_size <= min_line_search_step_contraction * step_size
|
||
//
|
||
// Note that by definition, for contraction:
|
||
//
|
||
// 0 < max_step_contraction < min_step_contraction < 1
|
||
//
|
||
double min_line_search_step_contraction;
|
||
|
||
// Maximum number of trial step size iterations during each line search,
|
||
// if a step size satisfying the search conditions cannot be found within
|
||
// this number of trials, the line search will terminate.
|
||
int max_num_line_search_step_size_iterations;
|
||
|
||
// Maximum number of restarts of the line search direction algorithm before
|
||
// terminating the optimization. Restarts of the line search direction
|
||
// algorithm occur when the current algorithm fails to produce a new descent
|
||
// direction. This typically indicates a numerical failure, or a breakdown
|
||
// in the validity of the approximations used.
|
||
int max_num_line_search_direction_restarts;
|
||
|
||
// The strong Wolfe conditions consist of the Armijo sufficient
|
||
// decrease condition, and an additional requirement that the
|
||
// step-size be chosen s.t. the _magnitude_ ('strong' Wolfe
|
||
// conditions) of the gradient along the search direction
|
||
// decreases sufficiently. Precisely, this second condition
|
||
// is that we seek a step_size s.t.
|
||
//
|
||
// |f'(step_size)| <= sufficient_curvature_decrease * |f'(0)|
|
||
//
|
||
// Where f() is the line search objective and f'() is the derivative
|
||
// of f w.r.t step_size (d f / d step_size).
|
||
double line_search_sufficient_curvature_decrease;
|
||
|
||
// During the bracketing phase of the Wolfe search, the step size is
|
||
// increased until either a point satisfying the Wolfe conditions is
|
||
// found, or an upper bound for a bracket containing a point satisfying
|
||
// the conditions is found. Precisely, at each iteration of the
|
||
// expansion:
|
||
//
|
||
// new_step_size <= max_step_expansion * step_size.
|
||
//
|
||
// By definition for expansion, max_step_expansion > 1.0.
|
||
double max_line_search_step_expansion;
|
||
|
||
// Maximum number of iterations for the minimizer to run for.
|
||
int max_num_iterations;
|
||
|
||
// Maximum time for which the minimizer should run for.
|
||
double max_solver_time_in_seconds;
|
||
|
||
// Minimizer terminates when
|
||
//
|
||
// (new_cost - old_cost) < function_tolerance * old_cost;
|
||
//
|
||
double function_tolerance;
|
||
|
||
// Minimizer terminates when
|
||
//
|
||
// max_i |x - Project(Plus(x, -g(x))| < gradient_tolerance
|
||
//
|
||
// This value should typically be 1e-4 * function_tolerance.
|
||
double gradient_tolerance;
|
||
|
||
// Logging options ---------------------------------------------------------
|
||
|
||
LoggingType logging_type;
|
||
|
||
// By default the Minimizer progress is logged to VLOG(1), which
|
||
// is sent to STDERR depending on the vlog level. If this flag is
|
||
// set to true, and logging_type is not SILENT, the logging output
|
||
// is sent to STDOUT.
|
||
bool minimizer_progress_to_stdout;
|
||
|
||
// Callbacks that are executed at the end of each iteration of the
|
||
// Minimizer. An iteration may terminate midway, either due to
|
||
// numerical failures or because one of the convergence tests has
|
||
// been satisfied. In this case none of the callbacks are
|
||
// executed.
|
||
|
||
// Callbacks are executed in the order that they are specified in
|
||
// this vector. By default, parameter blocks are updated only at
|
||
// the end of the optimization, i.e when the Minimizer
|
||
// terminates. This behaviour is controlled by
|
||
// update_state_every_variable. If the user wishes to have access
|
||
// to the update parameter blocks when his/her callbacks are
|
||
// executed, then set update_state_every_iteration to true.
|
||
//
|
||
// The solver does NOT take ownership of these pointers.
|
||
std::vector<IterationCallback*> callbacks;
|
||
};
|
||
|
||
struct CERES_EXPORT Summary {
|
||
Summary();
|
||
|
||
// A brief one line description of the state of the solver after
|
||
// termination.
|
||
std::string BriefReport() const;
|
||
|
||
// A full multiline description of the state of the solver after
|
||
// termination.
|
||
std::string FullReport() const;
|
||
|
||
bool IsSolutionUsable() const;
|
||
|
||
// Minimizer summary -------------------------------------------------
|
||
TerminationType termination_type;
|
||
|
||
// Reason why the solver terminated.
|
||
std::string message;
|
||
|
||
// Cost of the problem (value of the objective function) before
|
||
// the optimization.
|
||
double initial_cost;
|
||
|
||
// Cost of the problem (value of the objective function) after the
|
||
// optimization.
|
||
double final_cost;
|
||
|
||
// IterationSummary for each minimizer iteration in order.
|
||
std::vector<IterationSummary> iterations;
|
||
|
||
// Sum total of all time spent inside Ceres when Solve is called.
|
||
double total_time_in_seconds;
|
||
|
||
// Time (in seconds) spent evaluating the cost.
|
||
double cost_evaluation_time_in_seconds;
|
||
|
||
// Time (in seconds) spent evaluating the gradient.
|
||
double gradient_evaluation_time_in_seconds;
|
||
|
||
// Time (in seconds) spent minimizing the interpolating polynomial
|
||
// to compute the next candidate step size as part of a line search.
|
||
double line_search_polynomial_minimization_time_in_seconds;
|
||
|
||
// Number of parameters in the probem.
|
||
int num_parameters;
|
||
|
||
// Dimension of the tangent space of the problem.
|
||
int num_local_parameters;
|
||
|
||
// Type of line search direction used.
|
||
LineSearchDirectionType line_search_direction_type;
|
||
|
||
// Type of the line search algorithm used.
|
||
LineSearchType line_search_type;
|
||
|
||
// When performing line search, the degree of the polynomial used
|
||
// to approximate the objective function.
|
||
LineSearchInterpolationType line_search_interpolation_type;
|
||
|
||
// If the line search direction is NONLINEAR_CONJUGATE_GRADIENT,
|
||
// then this indicates the particular variant of non-linear
|
||
// conjugate gradient used.
|
||
NonlinearConjugateGradientType nonlinear_conjugate_gradient_type;
|
||
|
||
// If the type of the line search direction is LBFGS, then this
|
||
// indicates the rank of the Hessian approximation.
|
||
int max_lbfgs_rank;
|
||
};
|
||
|
||
// Once a least squares problem has been built, this function takes
|
||
// the problem and optimizes it based on the values of the options
|
||
// parameters. Upon return, a detailed summary of the work performed
|
||
// by the preprocessor, the non-linear minmizer and the linear
|
||
// solver are reported in the summary object.
|
||
virtual void Solve(const GradientProblemSolver::Options& options,
|
||
const GradientProblem& problem,
|
||
double* parameters,
|
||
GradientProblemSolver::Summary* summary);
|
||
};
|
||
|
||
// Helper function which avoids going through the interface.
|
||
CERES_EXPORT void Solve(const GradientProblemSolver::Options& options,
|
||
const GradientProblem& problem,
|
||
double* parameters,
|
||
GradientProblemSolver::Summary* summary);
|
||
|
||
} // namespace ceres
|
||
|
||
#include "ceres/internal/reenable_warnings.h"
|
||
|
||
#endif // CERES_PUBLIC_GRADIENT_PROBLEM_SOLVER_H_
|