343 lines
15 KiB
C++
343 lines
15 KiB
C++
// Ceres Solver - A fast non-linear least squares minimizer
|
|
// Copyright 2015 Google Inc. All rights reserved.
|
|
// http://ceres-solver.org/
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
// * Neither the name of Google Inc. nor the names of its contributors may be
|
|
// used to endorse or promote products derived from this software without
|
|
// specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
|
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
// POSSIBILITY OF SUCH DAMAGE.
|
|
//
|
|
// Author: keir@google.com (Keir Mierle)
|
|
// sameeragarwal@google.com (Sameer Agarwal)
|
|
//
|
|
// Create CostFunctions as needed by the least squares framework with jacobians
|
|
// computed via numeric (a.k.a. finite) differentiation. For more details see
|
|
// http://en.wikipedia.org/wiki/Numerical_differentiation.
|
|
//
|
|
// To get an numerically differentiated cost function, you must define
|
|
// a class with a operator() (a functor) that computes the residuals.
|
|
//
|
|
// The function must write the computed value in the last argument
|
|
// (the only non-const one) and return true to indicate success.
|
|
// Please see cost_function.h for details on how the return value
|
|
// maybe used to impose simple constraints on the parameter block.
|
|
//
|
|
// For example, consider a scalar error e = k - x'y, where both x and y are
|
|
// two-dimensional column vector parameters, the prime sign indicates
|
|
// transposition, and k is a constant. The form of this error, which is the
|
|
// difference between a constant and an expression, is a common pattern in least
|
|
// squares problems. For example, the value x'y might be the model expectation
|
|
// for a series of measurements, where there is an instance of the cost function
|
|
// for each measurement k.
|
|
//
|
|
// The actual cost added to the total problem is e^2, or (k - x'k)^2; however,
|
|
// the squaring is implicitly done by the optimization framework.
|
|
//
|
|
// To write an numerically-differentiable cost function for the above model, first
|
|
// define the object
|
|
//
|
|
// class MyScalarCostFunctor {
|
|
// MyScalarCostFunctor(double k): k_(k) {}
|
|
//
|
|
// bool operator()(const double* const x,
|
|
// const double* const y,
|
|
// double* residuals) const {
|
|
// residuals[0] = k_ - x[0] * y[0] + x[1] * y[1];
|
|
// return true;
|
|
// }
|
|
//
|
|
// private:
|
|
// double k_;
|
|
// };
|
|
//
|
|
// Note that in the declaration of operator() the input parameters x
|
|
// and y come first, and are passed as const pointers to arrays of
|
|
// doubles. If there were three input parameters, then the third input
|
|
// parameter would come after y. The output is always the last
|
|
// parameter, and is also a pointer to an array. In the example above,
|
|
// the residual is a scalar, so only residuals[0] is set.
|
|
//
|
|
// Then given this class definition, the numerically differentiated
|
|
// cost function with central differences used for computing the
|
|
// derivative can be constructed as follows.
|
|
//
|
|
// CostFunction* cost_function
|
|
// = new NumericDiffCostFunction<MyScalarCostFunctor, CENTRAL, 1, 2, 2>(
|
|
// new MyScalarCostFunctor(1.0)); ^ ^ ^ ^
|
|
// | | | |
|
|
// Finite Differencing Scheme -+ | | |
|
|
// Dimension of residual ------------+ | |
|
|
// Dimension of x ----------------------+ |
|
|
// Dimension of y -------------------------+
|
|
//
|
|
// In this example, there is usually an instance for each measurement of k.
|
|
//
|
|
// In the instantiation above, the template parameters following
|
|
// "MyScalarCostFunctor", "1, 2, 2", describe the functor as computing
|
|
// a 1-dimensional output from two arguments, both 2-dimensional.
|
|
//
|
|
// NumericDiffCostFunction also supports cost functions with a
|
|
// runtime-determined number of residuals. For example:
|
|
//
|
|
// CostFunction* cost_function
|
|
// = new NumericDiffCostFunction<MyScalarCostFunctor, CENTRAL, DYNAMIC, 2, 2>(
|
|
// new CostFunctorWithDynamicNumResiduals(1.0), ^ ^ ^
|
|
// TAKE_OWNERSHIP, | | |
|
|
// runtime_number_of_residuals); <----+ | | |
|
|
// | | | |
|
|
// | | | |
|
|
// Actual number of residuals ------+ | | |
|
|
// Indicate dynamic number of residuals --------------------+ | |
|
|
// Dimension of x ------------------------------------------------+ |
|
|
// Dimension of y ---------------------------------------------------+
|
|
//
|
|
// The framework can currently accommodate cost functions of up to 10
|
|
// independent variables, and there is no limit on the dimensionality
|
|
// of each of them.
|
|
//
|
|
// The central difference method is considerably more accurate at the cost of
|
|
// twice as many function evaluations than forward difference. Consider using
|
|
// central differences begin with, and only after that works, trying forward
|
|
// difference to improve performance.
|
|
//
|
|
// WARNING #1: A common beginner's error when first using
|
|
// NumericDiffCostFunction is to get the sizing wrong. In particular,
|
|
// there is a tendency to set the template parameters to (dimension of
|
|
// residual, number of parameters) instead of passing a dimension
|
|
// parameter for *every parameter*. In the example above, that would
|
|
// be <MyScalarCostFunctor, 1, 2>, which is missing the last '2'
|
|
// argument. Please be careful when setting the size parameters.
|
|
//
|
|
////////////////////////////////////////////////////////////////////////////
|
|
////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// ALTERNATE INTERFACE
|
|
//
|
|
// For a variety of reasons, including compatibility with legacy code,
|
|
// NumericDiffCostFunction can also take CostFunction objects as
|
|
// input. The following describes how.
|
|
//
|
|
// To get a numerically differentiated cost function, define a
|
|
// subclass of CostFunction such that the Evaluate() function ignores
|
|
// the jacobian parameter. The numeric differentiation wrapper will
|
|
// fill in the jacobian parameter if necessary by repeatedly calling
|
|
// the Evaluate() function with small changes to the appropriate
|
|
// parameters, and computing the slope. For performance, the numeric
|
|
// differentiation wrapper class is templated on the concrete cost
|
|
// function, even though it could be implemented only in terms of the
|
|
// virtual CostFunction interface.
|
|
//
|
|
// The numerically differentiated version of a cost function for a cost function
|
|
// can be constructed as follows:
|
|
//
|
|
// CostFunction* cost_function
|
|
// = new NumericDiffCostFunction<MyCostFunction, CENTRAL, 1, 4, 8>(
|
|
// new MyCostFunction(...), TAKE_OWNERSHIP);
|
|
//
|
|
// where MyCostFunction has 1 residual and 2 parameter blocks with sizes 4 and 8
|
|
// respectively. Look at the tests for a more detailed example.
|
|
//
|
|
// TODO(keir): Characterize accuracy; mention pitfalls; provide alternatives.
|
|
|
|
#ifndef CERES_PUBLIC_NUMERIC_DIFF_COST_FUNCTION_H_
|
|
#define CERES_PUBLIC_NUMERIC_DIFF_COST_FUNCTION_H_
|
|
|
|
#include "Eigen/Dense"
|
|
#include "ceres/cost_function.h"
|
|
#include "ceres/internal/numeric_diff.h"
|
|
#include "ceres/internal/scoped_ptr.h"
|
|
#include "ceres/numeric_diff_options.h"
|
|
#include "ceres/sized_cost_function.h"
|
|
#include "ceres/types.h"
|
|
#include "glog/logging.h"
|
|
|
|
namespace ceres {
|
|
|
|
template <typename CostFunctor,
|
|
NumericDiffMethodType method = CENTRAL,
|
|
int kNumResiduals = 0, // Number of residuals, or ceres::DYNAMIC
|
|
int N0 = 0, // Number of parameters in block 0.
|
|
int N1 = 0, // Number of parameters in block 1.
|
|
int N2 = 0, // Number of parameters in block 2.
|
|
int N3 = 0, // Number of parameters in block 3.
|
|
int N4 = 0, // Number of parameters in block 4.
|
|
int N5 = 0, // Number of parameters in block 5.
|
|
int N6 = 0, // Number of parameters in block 6.
|
|
int N7 = 0, // Number of parameters in block 7.
|
|
int N8 = 0, // Number of parameters in block 8.
|
|
int N9 = 0> // Number of parameters in block 9.
|
|
class NumericDiffCostFunction
|
|
: public SizedCostFunction<kNumResiduals,
|
|
N0, N1, N2, N3, N4,
|
|
N5, N6, N7, N8, N9> {
|
|
public:
|
|
NumericDiffCostFunction(
|
|
CostFunctor* functor,
|
|
Ownership ownership = TAKE_OWNERSHIP,
|
|
int num_residuals = kNumResiduals,
|
|
const NumericDiffOptions& options = NumericDiffOptions())
|
|
: functor_(functor),
|
|
ownership_(ownership),
|
|
options_(options) {
|
|
if (kNumResiduals == DYNAMIC) {
|
|
SizedCostFunction<kNumResiduals,
|
|
N0, N1, N2, N3, N4,
|
|
N5, N6, N7, N8, N9>
|
|
::set_num_residuals(num_residuals);
|
|
}
|
|
}
|
|
|
|
// Deprecated. New users should avoid using this constructor. Instead, use the
|
|
// constructor with NumericDiffOptions.
|
|
NumericDiffCostFunction(CostFunctor* functor,
|
|
Ownership ownership,
|
|
int num_residuals,
|
|
const double relative_step_size)
|
|
:functor_(functor),
|
|
ownership_(ownership),
|
|
options_() {
|
|
LOG(WARNING) << "This constructor is deprecated and will be removed in "
|
|
"a future version. Please use the NumericDiffOptions "
|
|
"constructor instead.";
|
|
|
|
if (kNumResiduals == DYNAMIC) {
|
|
SizedCostFunction<kNumResiduals,
|
|
N0, N1, N2, N3, N4,
|
|
N5, N6, N7, N8, N9>
|
|
::set_num_residuals(num_residuals);
|
|
}
|
|
|
|
options_.relative_step_size = relative_step_size;
|
|
}
|
|
|
|
~NumericDiffCostFunction() {
|
|
if (ownership_ != TAKE_OWNERSHIP) {
|
|
functor_.release();
|
|
}
|
|
}
|
|
|
|
virtual bool Evaluate(double const* const* parameters,
|
|
double* residuals,
|
|
double** jacobians) const {
|
|
using internal::FixedArray;
|
|
using internal::NumericDiff;
|
|
|
|
const int kNumParameters = N0 + N1 + N2 + N3 + N4 + N5 + N6 + N7 + N8 + N9;
|
|
const int kNumParameterBlocks =
|
|
(N0 > 0) + (N1 > 0) + (N2 > 0) + (N3 > 0) + (N4 > 0) +
|
|
(N5 > 0) + (N6 > 0) + (N7 > 0) + (N8 > 0) + (N9 > 0);
|
|
|
|
// Get the function value (residuals) at the the point to evaluate.
|
|
if (!internal::EvaluateImpl<CostFunctor,
|
|
N0, N1, N2, N3, N4, N5, N6, N7, N8, N9>(
|
|
functor_.get(),
|
|
parameters,
|
|
residuals,
|
|
functor_.get())) {
|
|
return false;
|
|
}
|
|
|
|
if (jacobians == NULL) {
|
|
return true;
|
|
}
|
|
|
|
// Create a copy of the parameters which will get mutated.
|
|
FixedArray<double> parameters_copy(kNumParameters);
|
|
FixedArray<double*> parameters_reference_copy(kNumParameterBlocks);
|
|
|
|
parameters_reference_copy[0] = parameters_copy.get();
|
|
if (N1) parameters_reference_copy[1] = parameters_reference_copy[0] + N0;
|
|
if (N2) parameters_reference_copy[2] = parameters_reference_copy[1] + N1;
|
|
if (N3) parameters_reference_copy[3] = parameters_reference_copy[2] + N2;
|
|
if (N4) parameters_reference_copy[4] = parameters_reference_copy[3] + N3;
|
|
if (N5) parameters_reference_copy[5] = parameters_reference_copy[4] + N4;
|
|
if (N6) parameters_reference_copy[6] = parameters_reference_copy[5] + N5;
|
|
if (N7) parameters_reference_copy[7] = parameters_reference_copy[6] + N6;
|
|
if (N8) parameters_reference_copy[8] = parameters_reference_copy[7] + N7;
|
|
if (N9) parameters_reference_copy[9] = parameters_reference_copy[8] + N8;
|
|
|
|
#define CERES_COPY_PARAMETER_BLOCK(block) \
|
|
if (N ## block) memcpy(parameters_reference_copy[block], \
|
|
parameters[block], \
|
|
sizeof(double) * N ## block); // NOLINT
|
|
|
|
CERES_COPY_PARAMETER_BLOCK(0);
|
|
CERES_COPY_PARAMETER_BLOCK(1);
|
|
CERES_COPY_PARAMETER_BLOCK(2);
|
|
CERES_COPY_PARAMETER_BLOCK(3);
|
|
CERES_COPY_PARAMETER_BLOCK(4);
|
|
CERES_COPY_PARAMETER_BLOCK(5);
|
|
CERES_COPY_PARAMETER_BLOCK(6);
|
|
CERES_COPY_PARAMETER_BLOCK(7);
|
|
CERES_COPY_PARAMETER_BLOCK(8);
|
|
CERES_COPY_PARAMETER_BLOCK(9);
|
|
|
|
#undef CERES_COPY_PARAMETER_BLOCK
|
|
|
|
#define CERES_EVALUATE_JACOBIAN_FOR_BLOCK(block) \
|
|
if (N ## block && jacobians[block] != NULL) { \
|
|
if (!NumericDiff<CostFunctor, \
|
|
method, \
|
|
kNumResiduals, \
|
|
N0, N1, N2, N3, N4, N5, N6, N7, N8, N9, \
|
|
block, \
|
|
N ## block >::EvaluateJacobianForParameterBlock( \
|
|
functor_.get(), \
|
|
residuals, \
|
|
options_, \
|
|
SizedCostFunction<kNumResiduals, \
|
|
N0, N1, N2, N3, N4, \
|
|
N5, N6, N7, N8, N9>::num_residuals(), \
|
|
block, \
|
|
N ## block, \
|
|
parameters_reference_copy.get(), \
|
|
jacobians[block])) { \
|
|
return false; \
|
|
} \
|
|
}
|
|
|
|
CERES_EVALUATE_JACOBIAN_FOR_BLOCK(0);
|
|
CERES_EVALUATE_JACOBIAN_FOR_BLOCK(1);
|
|
CERES_EVALUATE_JACOBIAN_FOR_BLOCK(2);
|
|
CERES_EVALUATE_JACOBIAN_FOR_BLOCK(3);
|
|
CERES_EVALUATE_JACOBIAN_FOR_BLOCK(4);
|
|
CERES_EVALUATE_JACOBIAN_FOR_BLOCK(5);
|
|
CERES_EVALUATE_JACOBIAN_FOR_BLOCK(6);
|
|
CERES_EVALUATE_JACOBIAN_FOR_BLOCK(7);
|
|
CERES_EVALUATE_JACOBIAN_FOR_BLOCK(8);
|
|
CERES_EVALUATE_JACOBIAN_FOR_BLOCK(9);
|
|
|
|
#undef CERES_EVALUATE_JACOBIAN_FOR_BLOCK
|
|
|
|
return true;
|
|
}
|
|
|
|
private:
|
|
internal::scoped_ptr<CostFunctor> functor_;
|
|
Ownership ownership_;
|
|
NumericDiffOptions options_;
|
|
};
|
|
|
|
} // namespace ceres
|
|
|
|
#endif // CERES_PUBLIC_NUMERIC_DIFF_COST_FUNCTION_H_
|