225 lines
7.3 KiB
C++
225 lines
7.3 KiB
C++
// Ceres Solver - A fast non-linear least squares minimizer
|
|
// Copyright 2015 Google Inc. All rights reserved.
|
|
// http://ceres-solver.org/
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
// * Neither the name of Google Inc. nor the names of its contributors may be
|
|
// used to endorse or promote products derived from this software without
|
|
// specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
|
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
// POSSIBILITY OF SUCH DAMAGE.
|
|
//
|
|
// Author: sameeragarwal@google.com (Sameer Agarwal)
|
|
|
|
#include <cmath>
|
|
#include "ceres/autodiff_local_parameterization.h"
|
|
#include "ceres/fpclassify.h"
|
|
#include "ceres/local_parameterization.h"
|
|
#include "ceres/rotation.h"
|
|
#include "gtest/gtest.h"
|
|
|
|
namespace ceres {
|
|
namespace internal {
|
|
|
|
struct IdentityPlus {
|
|
template <typename T>
|
|
bool operator()(const T* x, const T* delta, T* x_plus_delta) const {
|
|
for (int i = 0; i < 3; ++i) {
|
|
x_plus_delta[i] = x[i] + delta[i];
|
|
}
|
|
return true;
|
|
}
|
|
};
|
|
|
|
TEST(AutoDiffLocalParameterizationTest, IdentityParameterization) {
|
|
AutoDiffLocalParameterization<IdentityPlus, 3, 3>
|
|
parameterization;
|
|
|
|
double x[3] = {1.0, 2.0, 3.0};
|
|
double delta[3] = {0.0, 1.0, 2.0};
|
|
double x_plus_delta[3] = {0.0, 0.0, 0.0};
|
|
parameterization.Plus(x, delta, x_plus_delta);
|
|
|
|
EXPECT_EQ(x_plus_delta[0], 1.0);
|
|
EXPECT_EQ(x_plus_delta[1], 3.0);
|
|
EXPECT_EQ(x_plus_delta[2], 5.0);
|
|
|
|
double jacobian[9];
|
|
parameterization.ComputeJacobian(x, jacobian);
|
|
int k = 0;
|
|
for (int i = 0; i < 3; ++i) {
|
|
for (int j = 0; j < 3; ++j, ++k) {
|
|
EXPECT_EQ(jacobian[k], (i == j) ? 1.0 : 0.0);
|
|
}
|
|
}
|
|
}
|
|
|
|
struct ScaledPlus {
|
|
explicit ScaledPlus(const double &scale_factor)
|
|
: scale_factor_(scale_factor)
|
|
{}
|
|
|
|
template <typename T>
|
|
bool operator()(const T* x, const T* delta, T* x_plus_delta) const {
|
|
for (int i = 0; i < 3; ++i) {
|
|
x_plus_delta[i] = x[i] + T(scale_factor_) * delta[i];
|
|
}
|
|
return true;
|
|
}
|
|
|
|
const double scale_factor_;
|
|
};
|
|
|
|
TEST(AutoDiffLocalParameterizationTest, ScaledParameterization) {
|
|
const double kTolerance = 1e-14;
|
|
|
|
AutoDiffLocalParameterization<ScaledPlus, 3, 3>
|
|
parameterization(new ScaledPlus(1.2345));
|
|
|
|
double x[3] = {1.0, 2.0, 3.0};
|
|
double delta[3] = {0.0, 1.0, 2.0};
|
|
double x_plus_delta[3] = {0.0, 0.0, 0.0};
|
|
parameterization.Plus(x, delta, x_plus_delta);
|
|
|
|
EXPECT_NEAR(x_plus_delta[0], 1.0, kTolerance);
|
|
EXPECT_NEAR(x_plus_delta[1], 3.2345, kTolerance);
|
|
EXPECT_NEAR(x_plus_delta[2], 5.469, kTolerance);
|
|
|
|
double jacobian[9];
|
|
parameterization.ComputeJacobian(x, jacobian);
|
|
int k = 0;
|
|
for (int i = 0; i < 3; ++i) {
|
|
for (int j = 0; j < 3; ++j, ++k) {
|
|
EXPECT_NEAR(jacobian[k], (i == j) ? 1.2345 : 0.0, kTolerance);
|
|
}
|
|
}
|
|
}
|
|
|
|
struct QuaternionPlus {
|
|
template<typename T>
|
|
bool operator()(const T* x, const T* delta, T* x_plus_delta) const {
|
|
const T squared_norm_delta =
|
|
delta[0] * delta[0] + delta[1] * delta[1] + delta[2] * delta[2];
|
|
|
|
T q_delta[4];
|
|
if (squared_norm_delta > T(0.0)) {
|
|
T norm_delta = sqrt(squared_norm_delta);
|
|
const T sin_delta_by_delta = sin(norm_delta) / norm_delta;
|
|
q_delta[0] = cos(norm_delta);
|
|
q_delta[1] = sin_delta_by_delta * delta[0];
|
|
q_delta[2] = sin_delta_by_delta * delta[1];
|
|
q_delta[3] = sin_delta_by_delta * delta[2];
|
|
} else {
|
|
// We do not just use q_delta = [1,0,0,0] here because that is a
|
|
// constant and when used for automatic differentiation will
|
|
// lead to a zero derivative. Instead we take a first order
|
|
// approximation and evaluate it at zero.
|
|
q_delta[0] = T(1.0);
|
|
q_delta[1] = delta[0];
|
|
q_delta[2] = delta[1];
|
|
q_delta[3] = delta[2];
|
|
}
|
|
|
|
QuaternionProduct(q_delta, x, x_plus_delta);
|
|
return true;
|
|
}
|
|
};
|
|
|
|
void QuaternionParameterizationTestHelper(const double* x,
|
|
const double* delta) {
|
|
const double kTolerance = 1e-14;
|
|
double x_plus_delta_ref[4] = {0.0, 0.0, 0.0, 0.0};
|
|
double jacobian_ref[12];
|
|
|
|
|
|
QuaternionParameterization ref_parameterization;
|
|
ref_parameterization.Plus(x, delta, x_plus_delta_ref);
|
|
ref_parameterization.ComputeJacobian(x, jacobian_ref);
|
|
|
|
double x_plus_delta[4] = {0.0, 0.0, 0.0, 0.0};
|
|
double jacobian[12];
|
|
AutoDiffLocalParameterization<QuaternionPlus, 4, 3> parameterization;
|
|
parameterization.Plus(x, delta, x_plus_delta);
|
|
parameterization.ComputeJacobian(x, jacobian);
|
|
|
|
for (int i = 0; i < 4; ++i) {
|
|
EXPECT_NEAR(x_plus_delta[i], x_plus_delta_ref[i], kTolerance);
|
|
}
|
|
|
|
const double x_plus_delta_norm =
|
|
sqrt(x_plus_delta[0] * x_plus_delta[0] +
|
|
x_plus_delta[1] * x_plus_delta[1] +
|
|
x_plus_delta[2] * x_plus_delta[2] +
|
|
x_plus_delta[3] * x_plus_delta[3]);
|
|
|
|
EXPECT_NEAR(x_plus_delta_norm, 1.0, kTolerance);
|
|
|
|
for (int i = 0; i < 12; ++i) {
|
|
EXPECT_TRUE(IsFinite(jacobian[i]));
|
|
EXPECT_NEAR(jacobian[i], jacobian_ref[i], kTolerance)
|
|
<< "Jacobian mismatch: i = " << i
|
|
<< "\n Expected \n" << ConstMatrixRef(jacobian_ref, 4, 3)
|
|
<< "\n Actual \n" << ConstMatrixRef(jacobian, 4, 3);
|
|
}
|
|
}
|
|
|
|
TEST(AutoDiffLocalParameterization, QuaternionParameterizationZeroTest) {
|
|
double x[4] = {0.5, 0.5, 0.5, 0.5};
|
|
double delta[3] = {0.0, 0.0, 0.0};
|
|
QuaternionParameterizationTestHelper(x, delta);
|
|
}
|
|
|
|
|
|
TEST(AutoDiffLocalParameterization, QuaternionParameterizationNearZeroTest) {
|
|
double x[4] = {0.52, 0.25, 0.15, 0.45};
|
|
double norm_x = sqrt(x[0] * x[0] +
|
|
x[1] * x[1] +
|
|
x[2] * x[2] +
|
|
x[3] * x[3]);
|
|
for (int i = 0; i < 4; ++i) {
|
|
x[i] = x[i] / norm_x;
|
|
}
|
|
|
|
double delta[3] = {0.24, 0.15, 0.10};
|
|
for (int i = 0; i < 3; ++i) {
|
|
delta[i] = delta[i] * 1e-14;
|
|
}
|
|
|
|
QuaternionParameterizationTestHelper(x, delta);
|
|
}
|
|
|
|
TEST(AutoDiffLocalParameterization, QuaternionParameterizationNonZeroTest) {
|
|
double x[4] = {0.52, 0.25, 0.15, 0.45};
|
|
double norm_x = sqrt(x[0] * x[0] +
|
|
x[1] * x[1] +
|
|
x[2] * x[2] +
|
|
x[3] * x[3]);
|
|
|
|
for (int i = 0; i < 4; ++i) {
|
|
x[i] = x[i] / norm_x;
|
|
}
|
|
|
|
double delta[3] = {0.24, 0.15, 0.10};
|
|
QuaternionParameterizationTestHelper(x, delta);
|
|
}
|
|
|
|
} // namespace internal
|
|
} // namespace ceres
|