171 lines
5.9 KiB
C++
171 lines
5.9 KiB
C++
// Ceres Solver - A fast non-linear least squares minimizer
|
|
// Copyright 2015 Google Inc. All rights reserved.
|
|
// http://ceres-solver.org/
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
// * Neither the name of Google Inc. nor the names of its contributors may be
|
|
// used to endorse or promote products derived from this software without
|
|
// specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
|
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
// POSSIBILITY OF SUCH DAMAGE.
|
|
//
|
|
// Author: sameeragarwal@google.com (Sameer Agarwal)
|
|
|
|
#include "ceres/dense_qr_solver.h"
|
|
|
|
|
|
#include <cstddef>
|
|
#include "Eigen/Dense"
|
|
#include "ceres/dense_sparse_matrix.h"
|
|
#include "ceres/internal/eigen.h"
|
|
#include "ceres/internal/scoped_ptr.h"
|
|
#include "ceres/lapack.h"
|
|
#include "ceres/linear_solver.h"
|
|
#include "ceres/types.h"
|
|
#include "ceres/wall_time.h"
|
|
|
|
namespace ceres {
|
|
namespace internal {
|
|
|
|
DenseQRSolver::DenseQRSolver(const LinearSolver::Options& options)
|
|
: options_(options) {
|
|
work_.resize(1);
|
|
}
|
|
|
|
LinearSolver::Summary DenseQRSolver::SolveImpl(
|
|
DenseSparseMatrix* A,
|
|
const double* b,
|
|
const LinearSolver::PerSolveOptions& per_solve_options,
|
|
double* x) {
|
|
if (options_.dense_linear_algebra_library_type == EIGEN) {
|
|
return SolveUsingEigen(A, b, per_solve_options, x);
|
|
} else {
|
|
return SolveUsingLAPACK(A, b, per_solve_options, x);
|
|
}
|
|
}
|
|
|
|
LinearSolver::Summary DenseQRSolver::SolveUsingLAPACK(
|
|
DenseSparseMatrix* A,
|
|
const double* b,
|
|
const LinearSolver::PerSolveOptions& per_solve_options,
|
|
double* x) {
|
|
EventLogger event_logger("DenseQRSolver::Solve");
|
|
|
|
const int num_rows = A->num_rows();
|
|
const int num_cols = A->num_cols();
|
|
|
|
if (per_solve_options.D != NULL) {
|
|
// Temporarily append a diagonal block to the A matrix, but undo
|
|
// it before returning the matrix to the user.
|
|
A->AppendDiagonal(per_solve_options.D);
|
|
}
|
|
|
|
// TODO(sameeragarwal): Since we are copying anyways, the diagonal
|
|
// can be appended to the matrix instead of doing it on A.
|
|
lhs_ = A->matrix();
|
|
|
|
if (per_solve_options.D != NULL) {
|
|
// Undo the modifications to the matrix A.
|
|
A->RemoveDiagonal();
|
|
}
|
|
|
|
// rhs = [b;0] to account for the additional rows in the lhs.
|
|
if (rhs_.rows() != lhs_.rows()) {
|
|
rhs_.resize(lhs_.rows());
|
|
}
|
|
rhs_.setZero();
|
|
rhs_.head(num_rows) = ConstVectorRef(b, num_rows);
|
|
|
|
if (work_.rows() == 1) {
|
|
const int work_size =
|
|
LAPACK::EstimateWorkSizeForQR(lhs_.rows(), lhs_.cols());
|
|
VLOG(3) << "Working memory for Dense QR factorization: "
|
|
<< work_size * sizeof(double);
|
|
work_.resize(work_size);
|
|
}
|
|
|
|
LinearSolver::Summary summary;
|
|
summary.num_iterations = 1;
|
|
summary.termination_type = LAPACK::SolveInPlaceUsingQR(lhs_.rows(),
|
|
lhs_.cols(),
|
|
lhs_.data(),
|
|
work_.rows(),
|
|
work_.data(),
|
|
rhs_.data(),
|
|
&summary.message);
|
|
event_logger.AddEvent("Solve");
|
|
if (summary.termination_type == LINEAR_SOLVER_SUCCESS) {
|
|
VectorRef(x, num_cols) = rhs_.head(num_cols);
|
|
}
|
|
|
|
event_logger.AddEvent("TearDown");
|
|
return summary;
|
|
}
|
|
|
|
LinearSolver::Summary DenseQRSolver::SolveUsingEigen(
|
|
DenseSparseMatrix* A,
|
|
const double* b,
|
|
const LinearSolver::PerSolveOptions& per_solve_options,
|
|
double* x) {
|
|
EventLogger event_logger("DenseQRSolver::Solve");
|
|
|
|
const int num_rows = A->num_rows();
|
|
const int num_cols = A->num_cols();
|
|
|
|
if (per_solve_options.D != NULL) {
|
|
// Temporarily append a diagonal block to the A matrix, but undo
|
|
// it before returning the matrix to the user.
|
|
A->AppendDiagonal(per_solve_options.D);
|
|
}
|
|
|
|
// rhs = [b;0] to account for the additional rows in the lhs.
|
|
const int augmented_num_rows =
|
|
num_rows + ((per_solve_options.D != NULL) ? num_cols : 0);
|
|
if (rhs_.rows() != augmented_num_rows) {
|
|
rhs_.resize(augmented_num_rows);
|
|
rhs_.setZero();
|
|
}
|
|
rhs_.head(num_rows) = ConstVectorRef(b, num_rows);
|
|
event_logger.AddEvent("Setup");
|
|
|
|
// Solve the system.
|
|
VectorRef(x, num_cols) = A->matrix().householderQr().solve(rhs_);
|
|
event_logger.AddEvent("Solve");
|
|
|
|
if (per_solve_options.D != NULL) {
|
|
// Undo the modifications to the matrix A.
|
|
A->RemoveDiagonal();
|
|
}
|
|
|
|
// We always succeed, since the QR solver returns the best solution
|
|
// it can. It is the job of the caller to determine if the solution
|
|
// is good enough or not.
|
|
LinearSolver::Summary summary;
|
|
summary.num_iterations = 1;
|
|
summary.termination_type = LINEAR_SOLVER_SUCCESS;
|
|
summary.message = "Success.";
|
|
|
|
event_logger.AddEvent("TearDown");
|
|
return summary;
|
|
}
|
|
|
|
} // namespace internal
|
|
} // namespace ceres
|