200 lines
7.3 KiB
C++
200 lines
7.3 KiB
C++
// Ceres Solver - A fast non-linear least squares minimizer
|
|
// Copyright 2015 Google Inc. All rights reserved.
|
|
// http://ceres-solver.org/
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
// * Neither the name of Google Inc. nor the names of its contributors may be
|
|
// used to endorse or promote products derived from this software without
|
|
// specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
|
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
// POSSIBILITY OF SUCH DAMAGE.
|
|
//
|
|
// Author: sameeragarwal@google.com (Sameer Agarwal)
|
|
|
|
#include "ceres/implicit_schur_complement.h"
|
|
|
|
#include <cstddef>
|
|
#include "Eigen/Dense"
|
|
#include "ceres/block_random_access_dense_matrix.h"
|
|
#include "ceres/block_sparse_matrix.h"
|
|
#include "ceres/casts.h"
|
|
#include "ceres/internal/eigen.h"
|
|
#include "ceres/internal/scoped_ptr.h"
|
|
#include "ceres/linear_least_squares_problems.h"
|
|
#include "ceres/linear_solver.h"
|
|
#include "ceres/schur_eliminator.h"
|
|
#include "ceres/triplet_sparse_matrix.h"
|
|
#include "ceres/types.h"
|
|
#include "glog/logging.h"
|
|
#include "gtest/gtest.h"
|
|
|
|
namespace ceres {
|
|
namespace internal {
|
|
|
|
using testing::AssertionResult;
|
|
|
|
const double kEpsilon = 1e-14;
|
|
|
|
class ImplicitSchurComplementTest : public ::testing::Test {
|
|
protected :
|
|
virtual void SetUp() {
|
|
scoped_ptr<LinearLeastSquaresProblem> problem(
|
|
CreateLinearLeastSquaresProblemFromId(2));
|
|
|
|
CHECK_NOTNULL(problem.get());
|
|
A_.reset(down_cast<BlockSparseMatrix*>(problem->A.release()));
|
|
b_.reset(problem->b.release());
|
|
D_.reset(problem->D.release());
|
|
|
|
num_cols_ = A_->num_cols();
|
|
num_rows_ = A_->num_rows();
|
|
num_eliminate_blocks_ = problem->num_eliminate_blocks;
|
|
}
|
|
|
|
void ReducedLinearSystemAndSolution(double* D,
|
|
Matrix* lhs,
|
|
Vector* rhs,
|
|
Vector* solution) {
|
|
const CompressedRowBlockStructure* bs = A_->block_structure();
|
|
const int num_col_blocks = bs->cols.size();
|
|
std::vector<int> blocks(num_col_blocks - num_eliminate_blocks_, 0);
|
|
for (int i = num_eliminate_blocks_; i < num_col_blocks; ++i) {
|
|
blocks[i - num_eliminate_blocks_] = bs->cols[i].size;
|
|
}
|
|
|
|
BlockRandomAccessDenseMatrix blhs(blocks);
|
|
const int num_schur_rows = blhs.num_rows();
|
|
|
|
LinearSolver::Options options;
|
|
options.elimination_groups.push_back(num_eliminate_blocks_);
|
|
options.type = DENSE_SCHUR;
|
|
|
|
scoped_ptr<SchurEliminatorBase> eliminator(
|
|
SchurEliminatorBase::Create(options));
|
|
CHECK_NOTNULL(eliminator.get());
|
|
eliminator->Init(num_eliminate_blocks_, bs);
|
|
|
|
lhs->resize(num_schur_rows, num_schur_rows);
|
|
rhs->resize(num_schur_rows);
|
|
|
|
eliminator->Eliminate(A_.get(), b_.get(), D, &blhs, rhs->data());
|
|
|
|
MatrixRef lhs_ref(blhs.mutable_values(), num_schur_rows, num_schur_rows);
|
|
|
|
// lhs_ref is an upper triangular matrix. Construct a full version
|
|
// of lhs_ref in lhs by transposing lhs_ref, choosing the strictly
|
|
// lower triangular part of the matrix and adding it to lhs_ref.
|
|
*lhs = lhs_ref;
|
|
lhs->triangularView<Eigen::StrictlyLower>() =
|
|
lhs_ref.triangularView<Eigen::StrictlyUpper>().transpose();
|
|
|
|
solution->resize(num_cols_);
|
|
solution->setZero();
|
|
VectorRef schur_solution(solution->data() + num_cols_ - num_schur_rows,
|
|
num_schur_rows);
|
|
schur_solution = lhs->selfadjointView<Eigen::Upper>().llt().solve(*rhs);
|
|
eliminator->BackSubstitute(A_.get(), b_.get(), D,
|
|
schur_solution.data(), solution->data());
|
|
}
|
|
|
|
AssertionResult TestImplicitSchurComplement(double* D) {
|
|
Matrix lhs;
|
|
Vector rhs;
|
|
Vector reference_solution;
|
|
ReducedLinearSystemAndSolution(D, &lhs, &rhs, &reference_solution);
|
|
|
|
LinearSolver::Options options;
|
|
options.elimination_groups.push_back(num_eliminate_blocks_);
|
|
options.preconditioner_type = JACOBI;
|
|
ImplicitSchurComplement isc(options);
|
|
isc.Init(*A_, D, b_.get());
|
|
|
|
int num_sc_cols = lhs.cols();
|
|
|
|
for (int i = 0; i < num_sc_cols; ++i) {
|
|
Vector x(num_sc_cols);
|
|
x.setZero();
|
|
x(i) = 1.0;
|
|
|
|
Vector y(num_sc_cols);
|
|
y = lhs * x;
|
|
|
|
Vector z(num_sc_cols);
|
|
isc.RightMultiply(x.data(), z.data());
|
|
|
|
// The i^th column of the implicit schur complement is the same as
|
|
// the explicit schur complement.
|
|
if ((y - z).norm() > kEpsilon) {
|
|
return testing::AssertionFailure()
|
|
<< "Explicit and Implicit SchurComplements differ in "
|
|
<< "column " << i << ". explicit: " << y.transpose()
|
|
<< " implicit: " << z.transpose();
|
|
}
|
|
}
|
|
|
|
// Compare the rhs of the reduced linear system
|
|
if ((isc.rhs() - rhs).norm() > kEpsilon) {
|
|
return testing::AssertionFailure()
|
|
<< "Explicit and Implicit SchurComplements differ in "
|
|
<< "rhs. explicit: " << rhs.transpose()
|
|
<< " implicit: " << isc.rhs().transpose();
|
|
}
|
|
|
|
// Reference solution to the f_block.
|
|
const Vector reference_f_sol =
|
|
lhs.selfadjointView<Eigen::Upper>().llt().solve(rhs);
|
|
|
|
// Backsubstituted solution from the implicit schur solver using the
|
|
// reference solution to the f_block.
|
|
Vector sol(num_cols_);
|
|
isc.BackSubstitute(reference_f_sol.data(), sol.data());
|
|
if ((sol - reference_solution).norm() > kEpsilon) {
|
|
return testing::AssertionFailure()
|
|
<< "Explicit and Implicit SchurComplements solutions differ. "
|
|
<< "explicit: " << reference_solution.transpose()
|
|
<< " implicit: " << sol.transpose();
|
|
}
|
|
|
|
return testing::AssertionSuccess();
|
|
}
|
|
|
|
int num_rows_;
|
|
int num_cols_;
|
|
int num_eliminate_blocks_;
|
|
|
|
scoped_ptr<BlockSparseMatrix> A_;
|
|
scoped_array<double> b_;
|
|
scoped_array<double> D_;
|
|
};
|
|
|
|
// Verify that the Schur Complement matrix implied by the
|
|
// ImplicitSchurComplement class matches the one explicitly computed
|
|
// by the SchurComplement solver.
|
|
//
|
|
// We do this with and without regularization to check that the
|
|
// support for the LM diagonal is correct.
|
|
TEST_F(ImplicitSchurComplementTest, SchurMatrixValuesTest) {
|
|
EXPECT_TRUE(TestImplicitSchurComplement(NULL));
|
|
EXPECT_TRUE(TestImplicitSchurComplement(D_.get()));
|
|
}
|
|
|
|
} // namespace internal
|
|
} // namespace ceres
|