229 lines
8.7 KiB
C++
229 lines
8.7 KiB
C++
// Ceres Solver - A fast non-linear least squares minimizer
|
|
// Copyright 2015 Google Inc. All rights reserved.
|
|
// http://ceres-solver.org/
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
// * Neither the name of Google Inc. nor the names of its contributors may be
|
|
// used to endorse or promote products derived from this software without
|
|
// specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
|
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
// POSSIBILITY OF SUCH DAMAGE.
|
|
//
|
|
// Author: sameeragarwal@google.com (Sameer Agarwal)
|
|
|
|
#include <cstddef>
|
|
#include "ceres/block_sparse_matrix.h"
|
|
#include "ceres/block_structure.h"
|
|
#include "ceres/casts.h"
|
|
#include "ceres/detect_structure.h"
|
|
#include "ceres/internal/scoped_ptr.h"
|
|
#include "ceres/linear_least_squares_problems.h"
|
|
#include "ceres/linear_solver.h"
|
|
#include "ceres/schur_complement_solver.h"
|
|
#include "ceres/triplet_sparse_matrix.h"
|
|
#include "ceres/types.h"
|
|
#include "glog/logging.h"
|
|
#include "gtest/gtest.h"
|
|
|
|
namespace ceres {
|
|
namespace internal {
|
|
|
|
class SchurComplementSolverTest : public ::testing::Test {
|
|
protected:
|
|
void SetUpFromProblemId(int problem_id) {
|
|
scoped_ptr<LinearLeastSquaresProblem> problem(
|
|
CreateLinearLeastSquaresProblemFromId(problem_id));
|
|
|
|
CHECK_NOTNULL(problem.get());
|
|
A.reset(down_cast<BlockSparseMatrix*>(problem->A.release()));
|
|
b.reset(problem->b.release());
|
|
D.reset(problem->D.release());
|
|
|
|
num_cols = A->num_cols();
|
|
num_rows = A->num_rows();
|
|
num_eliminate_blocks = problem->num_eliminate_blocks;
|
|
|
|
x.resize(num_cols);
|
|
sol.resize(num_cols);
|
|
sol_d.resize(num_cols);
|
|
|
|
LinearSolver::Options options;
|
|
options.type = DENSE_QR;
|
|
|
|
scoped_ptr<LinearSolver> qr(LinearSolver::Create(options));
|
|
|
|
TripletSparseMatrix triplet_A(A->num_rows(),
|
|
A->num_cols(),
|
|
A->num_nonzeros());
|
|
A->ToTripletSparseMatrix(&triplet_A);
|
|
|
|
// Gold standard solutions using dense QR factorization.
|
|
DenseSparseMatrix dense_A(triplet_A);
|
|
qr->Solve(&dense_A, b.get(), LinearSolver::PerSolveOptions(), sol.data());
|
|
|
|
// Gold standard solution with appended diagonal.
|
|
LinearSolver::PerSolveOptions per_solve_options;
|
|
per_solve_options.D = D.get();
|
|
qr->Solve(&dense_A, b.get(), per_solve_options, sol_d.data());
|
|
}
|
|
|
|
void ComputeAndCompareSolutions(
|
|
int problem_id,
|
|
bool regularization,
|
|
ceres::LinearSolverType linear_solver_type,
|
|
ceres::DenseLinearAlgebraLibraryType dense_linear_algebra_library_type,
|
|
ceres::SparseLinearAlgebraLibraryType sparse_linear_algebra_library_type,
|
|
bool use_postordering) {
|
|
SetUpFromProblemId(problem_id);
|
|
LinearSolver::Options options;
|
|
options.elimination_groups.push_back(num_eliminate_blocks);
|
|
options.elimination_groups.push_back(
|
|
A->block_structure()->cols.size() - num_eliminate_blocks);
|
|
options.type = linear_solver_type;
|
|
options.dense_linear_algebra_library_type =
|
|
dense_linear_algebra_library_type;
|
|
options.sparse_linear_algebra_library_type =
|
|
sparse_linear_algebra_library_type;
|
|
options.use_postordering = use_postordering;
|
|
DetectStructure(*A->block_structure(),
|
|
num_eliminate_blocks,
|
|
&options.row_block_size,
|
|
&options.e_block_size,
|
|
&options.f_block_size);
|
|
|
|
scoped_ptr<LinearSolver> solver(LinearSolver::Create(options));
|
|
|
|
LinearSolver::PerSolveOptions per_solve_options;
|
|
LinearSolver::Summary summary;
|
|
if (regularization) {
|
|
per_solve_options.D = D.get();
|
|
}
|
|
|
|
summary = solver->Solve(A.get(), b.get(), per_solve_options, x.data());
|
|
EXPECT_EQ(summary.termination_type, LINEAR_SOLVER_SUCCESS);
|
|
|
|
if (regularization) {
|
|
ASSERT_NEAR((sol_d - x).norm() / num_cols, 0, 1e-10)
|
|
<< "Expected solution: " << sol_d.transpose()
|
|
<< " Actual solution: " << x.transpose();
|
|
} else {
|
|
ASSERT_NEAR((sol - x).norm() / num_cols, 0, 1e-10)
|
|
<< "Expected solution: " << sol.transpose()
|
|
<< " Actual solution: " << x.transpose();
|
|
}
|
|
}
|
|
|
|
int num_rows;
|
|
int num_cols;
|
|
int num_eliminate_blocks;
|
|
|
|
scoped_ptr<BlockSparseMatrix> A;
|
|
scoped_array<double> b;
|
|
scoped_array<double> D;
|
|
Vector x;
|
|
Vector sol;
|
|
Vector sol_d;
|
|
};
|
|
|
|
TEST_F(SchurComplementSolverTest, EigenBasedDenseSchurWithSmallProblem) {
|
|
ComputeAndCompareSolutions(2, false, DENSE_SCHUR, EIGEN, SUITE_SPARSE, true);
|
|
ComputeAndCompareSolutions(2, true, DENSE_SCHUR, EIGEN, SUITE_SPARSE, true);
|
|
}
|
|
|
|
TEST_F(SchurComplementSolverTest, EigenBasedDenseSchurWithLargeProblem) {
|
|
ComputeAndCompareSolutions(3, false, DENSE_SCHUR, EIGEN, SUITE_SPARSE, true);
|
|
ComputeAndCompareSolutions(3, true, DENSE_SCHUR, EIGEN, SUITE_SPARSE, true);
|
|
}
|
|
|
|
TEST_F(SchurComplementSolverTest, EigenBasedDenseSchurWithVaryingFBlockSize) {
|
|
ComputeAndCompareSolutions(4, true, DENSE_SCHUR, EIGEN, SUITE_SPARSE, true);
|
|
}
|
|
|
|
#ifndef CERES_NO_LAPACK
|
|
TEST_F(SchurComplementSolverTest, LAPACKBasedDenseSchurWithSmallProblem) {
|
|
ComputeAndCompareSolutions(2, false, DENSE_SCHUR, LAPACK, SUITE_SPARSE, true);
|
|
ComputeAndCompareSolutions(2, true, DENSE_SCHUR, LAPACK, SUITE_SPARSE, true);
|
|
}
|
|
|
|
TEST_F(SchurComplementSolverTest, LAPACKBasedDenseSchurWithLargeProblem) {
|
|
ComputeAndCompareSolutions(3, false, DENSE_SCHUR, LAPACK, SUITE_SPARSE, true);
|
|
ComputeAndCompareSolutions(3, true, DENSE_SCHUR, LAPACK, SUITE_SPARSE, true);
|
|
}
|
|
#endif
|
|
|
|
#ifndef CERES_NO_SUITESPARSE
|
|
TEST_F(SchurComplementSolverTest,
|
|
SparseSchurWithSuiteSparseSmallProblemNoPostOrdering) {
|
|
ComputeAndCompareSolutions(
|
|
2, false, SPARSE_SCHUR, EIGEN, SUITE_SPARSE, false);
|
|
ComputeAndCompareSolutions(2, true, SPARSE_SCHUR, EIGEN, SUITE_SPARSE, false);
|
|
}
|
|
|
|
TEST_F(SchurComplementSolverTest,
|
|
SparseSchurWithSuiteSparseSmallProblemPostOrdering) {
|
|
ComputeAndCompareSolutions(2, false, SPARSE_SCHUR, EIGEN, SUITE_SPARSE, true);
|
|
ComputeAndCompareSolutions(2, true, SPARSE_SCHUR, EIGEN, SUITE_SPARSE, true);
|
|
}
|
|
|
|
TEST_F(SchurComplementSolverTest,
|
|
SparseSchurWithSuiteSparseLargeProblemNoPostOrdering) {
|
|
ComputeAndCompareSolutions(
|
|
3, false, SPARSE_SCHUR, EIGEN, SUITE_SPARSE, false);
|
|
ComputeAndCompareSolutions(3, true, SPARSE_SCHUR, EIGEN, SUITE_SPARSE, false);
|
|
}
|
|
|
|
TEST_F(SchurComplementSolverTest,
|
|
SparseSchurWithSuiteSparseLargeProblemPostOrdering) {
|
|
ComputeAndCompareSolutions(3, false, SPARSE_SCHUR, EIGEN, SUITE_SPARSE, true);
|
|
ComputeAndCompareSolutions(3, true, SPARSE_SCHUR, EIGEN, SUITE_SPARSE, true);
|
|
}
|
|
#endif // CERES_NO_SUITESPARSE
|
|
|
|
#ifndef CERES_NO_CXSPARSE
|
|
TEST_F(SchurComplementSolverTest,
|
|
SparseSchurWithCXSparseSmallProblem) {
|
|
ComputeAndCompareSolutions(2, false, SPARSE_SCHUR, EIGEN, CX_SPARSE, true);
|
|
ComputeAndCompareSolutions(2, true, SPARSE_SCHUR, EIGEN, CX_SPARSE, true);
|
|
}
|
|
|
|
TEST_F(SchurComplementSolverTest,
|
|
SparseSchurWithCXSparseLargeProblem) {
|
|
ComputeAndCompareSolutions(3, false, SPARSE_SCHUR, EIGEN, CX_SPARSE, true);
|
|
ComputeAndCompareSolutions(3, true, SPARSE_SCHUR, EIGEN, CX_SPARSE, true);
|
|
}
|
|
#endif // CERES_NO_CXSPARSE
|
|
|
|
#ifdef CERES_USE_EIGEN_SPARSE
|
|
TEST_F(SchurComplementSolverTest,
|
|
SparseSchurWithEigenSparseSmallProblem) {
|
|
ComputeAndCompareSolutions(2, false, SPARSE_SCHUR, EIGEN, EIGEN_SPARSE, true);
|
|
ComputeAndCompareSolutions(2, true, SPARSE_SCHUR, EIGEN, EIGEN_SPARSE, true);
|
|
}
|
|
|
|
TEST_F(SchurComplementSolverTest,
|
|
SparseSchurWithEigenSparseLargeProblem) {
|
|
ComputeAndCompareSolutions(3, false, SPARSE_SCHUR, EIGEN, EIGEN_SPARSE, true);
|
|
ComputeAndCompareSolutions(3, true, SPARSE_SCHUR, EIGEN, EIGEN_SPARSE, true);
|
|
}
|
|
#endif // CERES_USE_EIGEN_SPARSE
|
|
|
|
} // namespace internal
|
|
} // namespace ceres
|