108 lines
4.5 KiB
C++
108 lines
4.5 KiB
C++
// Ceres Solver - A fast non-linear least squares minimizer
|
|
// Copyright 2015 Google Inc. All rights reserved.
|
|
// http://ceres-solver.org/
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
// * Neither the name of Google Inc. nor the names of its contributors may be
|
|
// used to endorse or promote products derived from this software without
|
|
// specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
|
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
// POSSIBILITY OF SUCH DAMAGE.
|
|
//
|
|
// Author: sameeragarwal@google.com (Sameer Agarwal)
|
|
//
|
|
// Interface definition for sparse matrices.
|
|
|
|
#ifndef CERES_INTERNAL_SPARSE_MATRIX_H_
|
|
#define CERES_INTERNAL_SPARSE_MATRIX_H_
|
|
|
|
#include <cstdio>
|
|
#include "ceres/linear_operator.h"
|
|
#include "ceres/internal/eigen.h"
|
|
#include "ceres/types.h"
|
|
|
|
namespace ceres {
|
|
namespace internal {
|
|
|
|
// This class defines the interface for storing and manipulating
|
|
// sparse matrices. The key property that differentiates different
|
|
// sparse matrices is how they are organized in memory and how the
|
|
// information about the sparsity structure of the matrix is
|
|
// stored. This has significant implications for linear solvers
|
|
// operating on these matrices.
|
|
//
|
|
// To deal with the different kinds of layouts, we will assume that a
|
|
// sparse matrix will have a two part representation. A values array
|
|
// that will be used to store the entries of the sparse matrix and
|
|
// some sort of a layout object that tells the user the sparsity
|
|
// structure and layout of the values array. For example in case of
|
|
// the TripletSparseMatrix, this information is carried in the rows
|
|
// and cols arrays and for the BlockSparseMatrix, this information is
|
|
// carried in the CompressedRowBlockStructure object.
|
|
//
|
|
// This interface deliberately does not contain any information about
|
|
// the structure of the sparse matrix as that seems to be highly
|
|
// matrix type dependent and we are at this stage unable to come up
|
|
// with an efficient high level interface that spans multiple sparse
|
|
// matrix types.
|
|
class SparseMatrix : public LinearOperator {
|
|
public:
|
|
virtual ~SparseMatrix();
|
|
|
|
// y += Ax;
|
|
virtual void RightMultiply(const double* x, double* y) const = 0;
|
|
// y += A'x;
|
|
virtual void LeftMultiply(const double* x, double* y) const = 0;
|
|
|
|
// In MATLAB notation sum(A.*A, 1)
|
|
virtual void SquaredColumnNorm(double* x) const = 0;
|
|
// A = A * diag(scale)
|
|
virtual void ScaleColumns(const double* scale) = 0;
|
|
|
|
// A = 0. A->num_nonzeros() == 0 is true after this call. The
|
|
// sparsity pattern is preserved.
|
|
virtual void SetZero() = 0;
|
|
|
|
// Resize and populate dense_matrix with a dense version of the
|
|
// sparse matrix.
|
|
virtual void ToDenseMatrix(Matrix* dense_matrix) const = 0;
|
|
|
|
// Write out the matrix as a sequence of (i,j,s) triplets. This
|
|
// format is useful for loading the matrix into MATLAB/octave as a
|
|
// sparse matrix.
|
|
virtual void ToTextFile(FILE* file) const = 0;
|
|
|
|
// Accessors for the values array that stores the entries of the
|
|
// sparse matrix. The exact interpreptation of the values of this
|
|
// array depends on the particular kind of SparseMatrix being
|
|
// accessed.
|
|
virtual double* mutable_values() = 0;
|
|
virtual const double* values() const = 0;
|
|
|
|
virtual int num_rows() const = 0;
|
|
virtual int num_cols() const = 0;
|
|
virtual int num_nonzeros() const = 0;
|
|
};
|
|
|
|
} // namespace internal
|
|
} // namespace ceres
|
|
|
|
#endif // CERES_INTERNAL_SPARSE_MATRIX_H_
|