308 lines
11 KiB
C++
308 lines
11 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#ifndef EIGEN_HOMOGENEOUS_H
|
|
#define EIGEN_HOMOGENEOUS_H
|
|
|
|
namespace Eigen {
|
|
|
|
/** \geometry_module \ingroup Geometry_Module
|
|
*
|
|
* \class Homogeneous
|
|
*
|
|
* \brief Expression of one (or a set of) homogeneous vector(s)
|
|
*
|
|
* \param MatrixType the type of the object in which we are making homogeneous
|
|
*
|
|
* This class represents an expression of one (or a set of) homogeneous vector(s).
|
|
* It is the return type of MatrixBase::homogeneous() and most of the time
|
|
* this is the only way it is used.
|
|
*
|
|
* \sa MatrixBase::homogeneous()
|
|
*/
|
|
|
|
namespace internal {
|
|
|
|
template<typename MatrixType,int Direction>
|
|
struct traits<Homogeneous<MatrixType,Direction> >
|
|
: traits<MatrixType>
|
|
{
|
|
typedef typename traits<MatrixType>::StorageKind StorageKind;
|
|
typedef typename nested<MatrixType>::type MatrixTypeNested;
|
|
typedef typename remove_reference<MatrixTypeNested>::type _MatrixTypeNested;
|
|
enum {
|
|
RowsPlusOne = (MatrixType::RowsAtCompileTime != Dynamic) ?
|
|
int(MatrixType::RowsAtCompileTime) + 1 : Dynamic,
|
|
ColsPlusOne = (MatrixType::ColsAtCompileTime != Dynamic) ?
|
|
int(MatrixType::ColsAtCompileTime) + 1 : Dynamic,
|
|
RowsAtCompileTime = Direction==Vertical ? RowsPlusOne : MatrixType::RowsAtCompileTime,
|
|
ColsAtCompileTime = Direction==Horizontal ? ColsPlusOne : MatrixType::ColsAtCompileTime,
|
|
MaxRowsAtCompileTime = RowsAtCompileTime,
|
|
MaxColsAtCompileTime = ColsAtCompileTime,
|
|
TmpFlags = _MatrixTypeNested::Flags & HereditaryBits,
|
|
Flags = ColsAtCompileTime==1 ? (TmpFlags & ~RowMajorBit)
|
|
: RowsAtCompileTime==1 ? (TmpFlags | RowMajorBit)
|
|
: TmpFlags,
|
|
CoeffReadCost = _MatrixTypeNested::CoeffReadCost
|
|
};
|
|
};
|
|
|
|
template<typename MatrixType,typename Lhs> struct homogeneous_left_product_impl;
|
|
template<typename MatrixType,typename Rhs> struct homogeneous_right_product_impl;
|
|
|
|
} // end namespace internal
|
|
|
|
template<typename MatrixType,int _Direction> class Homogeneous
|
|
: internal::no_assignment_operator, public MatrixBase<Homogeneous<MatrixType,_Direction> >
|
|
{
|
|
public:
|
|
|
|
enum { Direction = _Direction };
|
|
|
|
typedef MatrixBase<Homogeneous> Base;
|
|
EIGEN_DENSE_PUBLIC_INTERFACE(Homogeneous)
|
|
|
|
inline Homogeneous(const MatrixType& matrix)
|
|
: m_matrix(matrix)
|
|
{}
|
|
|
|
inline Index rows() const { return m_matrix.rows() + (int(Direction)==Vertical ? 1 : 0); }
|
|
inline Index cols() const { return m_matrix.cols() + (int(Direction)==Horizontal ? 1 : 0); }
|
|
|
|
inline Scalar coeff(Index row, Index col=0) const
|
|
{
|
|
if( (int(Direction)==Vertical && row==m_matrix.rows())
|
|
|| (int(Direction)==Horizontal && col==m_matrix.cols()))
|
|
return Scalar(1);
|
|
return m_matrix.coeff(row, col);
|
|
}
|
|
|
|
template<typename Rhs>
|
|
inline const internal::homogeneous_right_product_impl<Homogeneous,Rhs>
|
|
operator* (const MatrixBase<Rhs>& rhs) const
|
|
{
|
|
eigen_assert(int(Direction)==Horizontal);
|
|
return internal::homogeneous_right_product_impl<Homogeneous,Rhs>(m_matrix,rhs.derived());
|
|
}
|
|
|
|
template<typename Lhs> friend
|
|
inline const internal::homogeneous_left_product_impl<Homogeneous,Lhs>
|
|
operator* (const MatrixBase<Lhs>& lhs, const Homogeneous& rhs)
|
|
{
|
|
eigen_assert(int(Direction)==Vertical);
|
|
return internal::homogeneous_left_product_impl<Homogeneous,Lhs>(lhs.derived(),rhs.m_matrix);
|
|
}
|
|
|
|
template<typename Scalar, int Dim, int Mode, int Options> friend
|
|
inline const internal::homogeneous_left_product_impl<Homogeneous,Transform<Scalar,Dim,Mode,Options> >
|
|
operator* (const Transform<Scalar,Dim,Mode,Options>& lhs, const Homogeneous& rhs)
|
|
{
|
|
eigen_assert(int(Direction)==Vertical);
|
|
return internal::homogeneous_left_product_impl<Homogeneous,Transform<Scalar,Dim,Mode,Options> >(lhs,rhs.m_matrix);
|
|
}
|
|
|
|
protected:
|
|
typename MatrixType::Nested m_matrix;
|
|
};
|
|
|
|
/** \geometry_module
|
|
*
|
|
* \return an expression of the equivalent homogeneous vector
|
|
*
|
|
* \only_for_vectors
|
|
*
|
|
* Example: \include MatrixBase_homogeneous.cpp
|
|
* Output: \verbinclude MatrixBase_homogeneous.out
|
|
*
|
|
* \sa class Homogeneous
|
|
*/
|
|
template<typename Derived>
|
|
inline typename MatrixBase<Derived>::HomogeneousReturnType
|
|
MatrixBase<Derived>::homogeneous() const
|
|
{
|
|
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived);
|
|
return derived();
|
|
}
|
|
|
|
/** \geometry_module
|
|
*
|
|
* \returns a matrix expression of homogeneous column (or row) vectors
|
|
*
|
|
* Example: \include VectorwiseOp_homogeneous.cpp
|
|
* Output: \verbinclude VectorwiseOp_homogeneous.out
|
|
*
|
|
* \sa MatrixBase::homogeneous() */
|
|
template<typename ExpressionType, int Direction>
|
|
inline Homogeneous<ExpressionType,Direction>
|
|
VectorwiseOp<ExpressionType,Direction>::homogeneous() const
|
|
{
|
|
return _expression();
|
|
}
|
|
|
|
/** \geometry_module
|
|
*
|
|
* \returns an expression of the homogeneous normalized vector of \c *this
|
|
*
|
|
* Example: \include MatrixBase_hnormalized.cpp
|
|
* Output: \verbinclude MatrixBase_hnormalized.out
|
|
*
|
|
* \sa VectorwiseOp::hnormalized() */
|
|
template<typename Derived>
|
|
inline const typename MatrixBase<Derived>::HNormalizedReturnType
|
|
MatrixBase<Derived>::hnormalized() const
|
|
{
|
|
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived);
|
|
return ConstStartMinusOne(derived(),0,0,
|
|
ColsAtCompileTime==1?size()-1:1,
|
|
ColsAtCompileTime==1?1:size()-1) / coeff(size()-1);
|
|
}
|
|
|
|
/** \geometry_module
|
|
*
|
|
* \returns an expression of the homogeneous normalized vector of \c *this
|
|
*
|
|
* Example: \include DirectionWise_hnormalized.cpp
|
|
* Output: \verbinclude DirectionWise_hnormalized.out
|
|
*
|
|
* \sa MatrixBase::hnormalized() */
|
|
template<typename ExpressionType, int Direction>
|
|
inline const typename VectorwiseOp<ExpressionType,Direction>::HNormalizedReturnType
|
|
VectorwiseOp<ExpressionType,Direction>::hnormalized() const
|
|
{
|
|
return HNormalized_Block(_expression(),0,0,
|
|
Direction==Vertical ? _expression().rows()-1 : _expression().rows(),
|
|
Direction==Horizontal ? _expression().cols()-1 : _expression().cols()).cwiseQuotient(
|
|
Replicate<HNormalized_Factors,
|
|
Direction==Vertical ? HNormalized_SizeMinusOne : 1,
|
|
Direction==Horizontal ? HNormalized_SizeMinusOne : 1>
|
|
(HNormalized_Factors(_expression(),
|
|
Direction==Vertical ? _expression().rows()-1:0,
|
|
Direction==Horizontal ? _expression().cols()-1:0,
|
|
Direction==Vertical ? 1 : _expression().rows(),
|
|
Direction==Horizontal ? 1 : _expression().cols()),
|
|
Direction==Vertical ? _expression().rows()-1 : 1,
|
|
Direction==Horizontal ? _expression().cols()-1 : 1));
|
|
}
|
|
|
|
namespace internal {
|
|
|
|
template<typename MatrixOrTransformType>
|
|
struct take_matrix_for_product
|
|
{
|
|
typedef MatrixOrTransformType type;
|
|
static const type& run(const type &x) { return x; }
|
|
};
|
|
|
|
template<typename Scalar, int Dim, int Mode,int Options>
|
|
struct take_matrix_for_product<Transform<Scalar, Dim, Mode, Options> >
|
|
{
|
|
typedef Transform<Scalar, Dim, Mode, Options> TransformType;
|
|
typedef typename internal::add_const<typename TransformType::ConstAffinePart>::type type;
|
|
static type run (const TransformType& x) { return x.affine(); }
|
|
};
|
|
|
|
template<typename Scalar, int Dim, int Options>
|
|
struct take_matrix_for_product<Transform<Scalar, Dim, Projective, Options> >
|
|
{
|
|
typedef Transform<Scalar, Dim, Projective, Options> TransformType;
|
|
typedef typename TransformType::MatrixType type;
|
|
static const type& run (const TransformType& x) { return x.matrix(); }
|
|
};
|
|
|
|
template<typename MatrixType,typename Lhs>
|
|
struct traits<homogeneous_left_product_impl<Homogeneous<MatrixType,Vertical>,Lhs> >
|
|
{
|
|
typedef typename take_matrix_for_product<Lhs>::type LhsMatrixType;
|
|
typedef typename remove_all<MatrixType>::type MatrixTypeCleaned;
|
|
typedef typename remove_all<LhsMatrixType>::type LhsMatrixTypeCleaned;
|
|
typedef typename make_proper_matrix_type<
|
|
typename traits<MatrixTypeCleaned>::Scalar,
|
|
LhsMatrixTypeCleaned::RowsAtCompileTime,
|
|
MatrixTypeCleaned::ColsAtCompileTime,
|
|
MatrixTypeCleaned::PlainObject::Options,
|
|
LhsMatrixTypeCleaned::MaxRowsAtCompileTime,
|
|
MatrixTypeCleaned::MaxColsAtCompileTime>::type ReturnType;
|
|
};
|
|
|
|
template<typename MatrixType,typename Lhs>
|
|
struct homogeneous_left_product_impl<Homogeneous<MatrixType,Vertical>,Lhs>
|
|
: public ReturnByValue<homogeneous_left_product_impl<Homogeneous<MatrixType,Vertical>,Lhs> >
|
|
{
|
|
typedef typename traits<homogeneous_left_product_impl>::LhsMatrixType LhsMatrixType;
|
|
typedef typename remove_all<LhsMatrixType>::type LhsMatrixTypeCleaned;
|
|
typedef typename remove_all<typename LhsMatrixTypeCleaned::Nested>::type LhsMatrixTypeNested;
|
|
typedef typename MatrixType::Index Index;
|
|
homogeneous_left_product_impl(const Lhs& lhs, const MatrixType& rhs)
|
|
: m_lhs(take_matrix_for_product<Lhs>::run(lhs)),
|
|
m_rhs(rhs)
|
|
{}
|
|
|
|
inline Index rows() const { return m_lhs.rows(); }
|
|
inline Index cols() const { return m_rhs.cols(); }
|
|
|
|
template<typename Dest> void evalTo(Dest& dst) const
|
|
{
|
|
// FIXME investigate how to allow lazy evaluation of this product when possible
|
|
dst = Block<const LhsMatrixTypeNested,
|
|
LhsMatrixTypeNested::RowsAtCompileTime,
|
|
LhsMatrixTypeNested::ColsAtCompileTime==Dynamic?Dynamic:LhsMatrixTypeNested::ColsAtCompileTime-1>
|
|
(m_lhs,0,0,m_lhs.rows(),m_lhs.cols()-1) * m_rhs;
|
|
dst += m_lhs.col(m_lhs.cols()-1).rowwise()
|
|
.template replicate<MatrixType::ColsAtCompileTime>(m_rhs.cols());
|
|
}
|
|
|
|
typename LhsMatrixTypeCleaned::Nested m_lhs;
|
|
typename MatrixType::Nested m_rhs;
|
|
};
|
|
|
|
template<typename MatrixType,typename Rhs>
|
|
struct traits<homogeneous_right_product_impl<Homogeneous<MatrixType,Horizontal>,Rhs> >
|
|
{
|
|
typedef typename make_proper_matrix_type<typename traits<MatrixType>::Scalar,
|
|
MatrixType::RowsAtCompileTime,
|
|
Rhs::ColsAtCompileTime,
|
|
MatrixType::PlainObject::Options,
|
|
MatrixType::MaxRowsAtCompileTime,
|
|
Rhs::MaxColsAtCompileTime>::type ReturnType;
|
|
};
|
|
|
|
template<typename MatrixType,typename Rhs>
|
|
struct homogeneous_right_product_impl<Homogeneous<MatrixType,Horizontal>,Rhs>
|
|
: public ReturnByValue<homogeneous_right_product_impl<Homogeneous<MatrixType,Horizontal>,Rhs> >
|
|
{
|
|
typedef typename remove_all<typename Rhs::Nested>::type RhsNested;
|
|
typedef typename MatrixType::Index Index;
|
|
homogeneous_right_product_impl(const MatrixType& lhs, const Rhs& rhs)
|
|
: m_lhs(lhs), m_rhs(rhs)
|
|
{}
|
|
|
|
inline Index rows() const { return m_lhs.rows(); }
|
|
inline Index cols() const { return m_rhs.cols(); }
|
|
|
|
template<typename Dest> void evalTo(Dest& dst) const
|
|
{
|
|
// FIXME investigate how to allow lazy evaluation of this product when possible
|
|
dst = m_lhs * Block<const RhsNested,
|
|
RhsNested::RowsAtCompileTime==Dynamic?Dynamic:RhsNested::RowsAtCompileTime-1,
|
|
RhsNested::ColsAtCompileTime>
|
|
(m_rhs,0,0,m_rhs.rows()-1,m_rhs.cols());
|
|
dst += m_rhs.row(m_rhs.rows()-1).colwise()
|
|
.template replicate<MatrixType::RowsAtCompileTime>(m_lhs.rows());
|
|
}
|
|
|
|
typename MatrixType::Nested m_lhs;
|
|
typename Rhs::Nested m_rhs;
|
|
};
|
|
|
|
} // end namespace internal
|
|
|
|
} // end namespace Eigen
|
|
|
|
#endif // EIGEN_HOMOGENEOUS_H
|