MYNT-EYE-S-SDK/3rdparty/eigen3/Eigen/src/IterativeLinearSolvers/BiCGSTAB.h
2019-01-03 16:25:18 +08:00

264 lines
8.0 KiB
C++

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2011 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_BICGSTAB_H
#define EIGEN_BICGSTAB_H
namespace Eigen {
namespace internal {
/** \internal Low-level bi conjugate gradient stabilized algorithm
* \param mat The matrix A
* \param rhs The right hand side vector b
* \param x On input and initial solution, on output the computed solution.
* \param precond A preconditioner being able to efficiently solve for an
* approximation of Ax=b (regardless of b)
* \param iters On input the max number of iteration, on output the number of performed iterations.
* \param tol_error On input the tolerance error, on output an estimation of the relative error.
* \return false in the case of numerical issue, for example a break down of BiCGSTAB.
*/
template<typename MatrixType, typename Rhs, typename Dest, typename Preconditioner>
bool bicgstab(const MatrixType& mat, const Rhs& rhs, Dest& x,
const Preconditioner& precond, int& iters,
typename Dest::RealScalar& tol_error)
{
using std::sqrt;
using std::abs;
typedef typename Dest::RealScalar RealScalar;
typedef typename Dest::Scalar Scalar;
typedef Matrix<Scalar,Dynamic,1> VectorType;
RealScalar tol = tol_error;
int maxIters = iters;
int n = mat.cols();
VectorType r = rhs - mat * x;
VectorType r0 = r;
RealScalar r0_sqnorm = r0.squaredNorm();
RealScalar rhs_sqnorm = rhs.squaredNorm();
if(rhs_sqnorm == 0)
{
x.setZero();
return true;
}
Scalar rho = 1;
Scalar alpha = 1;
Scalar w = 1;
VectorType v = VectorType::Zero(n), p = VectorType::Zero(n);
VectorType y(n), z(n);
VectorType kt(n), ks(n);
VectorType s(n), t(n);
RealScalar tol2 = tol*tol;
RealScalar eps2 = NumTraits<Scalar>::epsilon()*NumTraits<Scalar>::epsilon();
int i = 0;
int restarts = 0;
while ( r.squaredNorm()/rhs_sqnorm > tol2 && i<maxIters )
{
Scalar rho_old = rho;
rho = r0.dot(r);
if (abs(rho) < eps2*r0_sqnorm)
{
// The new residual vector became too orthogonal to the arbitrarily choosen direction r0
// Let's restart with a new r0:
r0 = r;
rho = r0_sqnorm = r.squaredNorm();
if(restarts++ == 0)
i = 0;
}
Scalar beta = (rho/rho_old) * (alpha / w);
p = r + beta * (p - w * v);
y = precond.solve(p);
v.noalias() = mat * y;
alpha = rho / r0.dot(v);
s = r - alpha * v;
z = precond.solve(s);
t.noalias() = mat * z;
RealScalar tmp = t.squaredNorm();
if(tmp>RealScalar(0))
w = t.dot(s) / tmp;
else
w = Scalar(0);
x += alpha * y + w * z;
r = s - w * t;
++i;
}
tol_error = sqrt(r.squaredNorm()/rhs_sqnorm);
iters = i;
return true;
}
}
template< typename _MatrixType,
typename _Preconditioner = DiagonalPreconditioner<typename _MatrixType::Scalar> >
class BiCGSTAB;
namespace internal {
template< typename _MatrixType, typename _Preconditioner>
struct traits<BiCGSTAB<_MatrixType,_Preconditioner> >
{
typedef _MatrixType MatrixType;
typedef _Preconditioner Preconditioner;
};
}
/** \ingroup IterativeLinearSolvers_Module
* \brief A bi conjugate gradient stabilized solver for sparse square problems
*
* This class allows to solve for A.x = b sparse linear problems using a bi conjugate gradient
* stabilized algorithm. The vectors x and b can be either dense or sparse.
*
* \tparam _MatrixType the type of the sparse matrix A, can be a dense or a sparse matrix.
* \tparam _Preconditioner the type of the preconditioner. Default is DiagonalPreconditioner
*
* The maximal number of iterations and tolerance value can be controlled via the setMaxIterations()
* and setTolerance() methods. The defaults are the size of the problem for the maximal number of iterations
* and NumTraits<Scalar>::epsilon() for the tolerance.
*
* This class can be used as the direct solver classes. Here is a typical usage example:
* \code
* int n = 10000;
* VectorXd x(n), b(n);
* SparseMatrix<double> A(n,n);
* // fill A and b
* BiCGSTAB<SparseMatrix<double> > solver;
* solver.compute(A);
* x = solver.solve(b);
* std::cout << "#iterations: " << solver.iterations() << std::endl;
* std::cout << "estimated error: " << solver.error() << std::endl;
* // update b, and solve again
* x = solver.solve(b);
* \endcode
*
* By default the iterations start with x=0 as an initial guess of the solution.
* One can control the start using the solveWithGuess() method.
*
* \sa class SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner
*/
template< typename _MatrixType, typename _Preconditioner>
class BiCGSTAB : public IterativeSolverBase<BiCGSTAB<_MatrixType,_Preconditioner> >
{
typedef IterativeSolverBase<BiCGSTAB> Base;
using Base::mp_matrix;
using Base::m_error;
using Base::m_iterations;
using Base::m_info;
using Base::m_isInitialized;
public:
typedef _MatrixType MatrixType;
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::Index Index;
typedef typename MatrixType::RealScalar RealScalar;
typedef _Preconditioner Preconditioner;
public:
/** Default constructor. */
BiCGSTAB() : Base() {}
/** Initialize the solver with matrix \a A for further \c Ax=b solving.
*
* This constructor is a shortcut for the default constructor followed
* by a call to compute().
*
* \warning this class stores a reference to the matrix A as well as some
* precomputed values that depend on it. Therefore, if \a A is changed
* this class becomes invalid. Call compute() to update it with the new
* matrix A, or modify a copy of A.
*/
template<typename MatrixDerived>
explicit BiCGSTAB(const EigenBase<MatrixDerived>& A) : Base(A.derived()) {}
~BiCGSTAB() {}
/** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A
* \a x0 as an initial solution.
*
* \sa compute()
*/
template<typename Rhs,typename Guess>
inline const internal::solve_retval_with_guess<BiCGSTAB, Rhs, Guess>
solveWithGuess(const MatrixBase<Rhs>& b, const Guess& x0) const
{
eigen_assert(m_isInitialized && "BiCGSTAB is not initialized.");
eigen_assert(Base::rows()==b.rows()
&& "BiCGSTAB::solve(): invalid number of rows of the right hand side matrix b");
return internal::solve_retval_with_guess
<BiCGSTAB, Rhs, Guess>(*this, b.derived(), x0);
}
/** \internal */
template<typename Rhs,typename Dest>
void _solveWithGuess(const Rhs& b, Dest& x) const
{
bool failed = false;
for(int j=0; j<b.cols(); ++j)
{
m_iterations = Base::maxIterations();
m_error = Base::m_tolerance;
typename Dest::ColXpr xj(x,j);
if(!internal::bicgstab(*mp_matrix, b.col(j), xj, Base::m_preconditioner, m_iterations, m_error))
failed = true;
}
m_info = failed ? NumericalIssue
: m_error <= Base::m_tolerance ? Success
: NoConvergence;
m_isInitialized = true;
}
/** \internal */
template<typename Rhs,typename Dest>
void _solve(const Rhs& b, Dest& x) const
{
// x.setZero();
x = b;
_solveWithGuess(b,x);
}
protected:
};
namespace internal {
template<typename _MatrixType, typename _Preconditioner, typename Rhs>
struct solve_retval<BiCGSTAB<_MatrixType, _Preconditioner>, Rhs>
: solve_retval_base<BiCGSTAB<_MatrixType, _Preconditioner>, Rhs>
{
typedef BiCGSTAB<_MatrixType, _Preconditioner> Dec;
EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
template<typename Dest> void evalTo(Dest& dst) const
{
dec()._solve(rhs(),dst);
}
};
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_BICGSTAB_H