MYNT-EYE-S-SDK/docs/src/slam/how_to_use_kalibr.rst
2019-03-14 11:48:41 +08:00

300 lines
13 KiB
ReStructuredText
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

.. _how_to_use_kalibr:
How to calibrate MYNTEYE by kalibr
===================================
Target
------------
* Calibrate the pose relationship between left and right camera
* Calibrate the pose relationship left camera between and IMU
Preparation
------------
* **Install kalibr**:Refer to `kalibr wiki <https://github.com/ethz-asl/kalibr/wiki/installation>`_ and follow the steps to install
* **Calibration board** kalibr supports ``chessbord`` , ``circlegrid`` , ``aprilgrid`` ,choose ``aprilgrid`` here Calibration board file can be directly `download <https://github.com/ethz-asl/kalibr/wiki/downloads>`_ , Or you can also generate calibration board by Kalibr tool.
.. code-block:: bash
$ kalibr_create_target_pdf --type 'apriltag' --nx 6 --ny 6 --tsize 0.08 --tspace 0.3
View parameters' meanings by kalibr_create)target_pdf command:
.. code-block:: bash
$ kalibr_create_target_pdf --h
usage:
Example Aprilgrid:
kalibr_create_target_pdf --type apriltag --nx 6 --ny 6 --tsize 0.08 --tspace 0.3
Example Checkerboard:
kalibr_create_target_pdf --type checkerboard --nx 6 --ny 6 -csx 0.05 --csy 0.1
Generate PDFs of calibration patterns.
optional arguments:
-h, --help show this help message and exit
Output options:
output Output filename
--eps Also output an EPS file
Generic grid options:
--type GRIDTYPE The grid pattern type. ('apriltag' or 'checkerboard')
--nx N_COLS The number of tags in x direction (default: 6)
--ny N_ROWS The number of tags in y direction (default: 7)
Apriltag arguments:
--tsize TSIZE The size of one tag [m] (default: 0.08)
--tspace TAGSPACING The space between the tags in fraction of the edge size
[0..1] (default: 0.3)
--tfam TAGFAMILIY Familiy of April tags ['t16h5', 't25h9', 't25h7',
't36h11'] (default: t36h11)
Checkerboard arguments:
--csx CHESSSZX The size of one chessboard square in x direction [m]
(default: 0.05)
--csy CHESSSZY The size of one chessboard square in y direction [m]
(default: 0.05)
* **Calibrate the intrinsic IMU parameters** kalibr requires imu data to be calibrated by intrinsic parameters by default.The intrinsic parameters calibration tool uses `imu-tk <https://github.com/Kyle-ak/imu_tk.git>`_ .
* **Count imu data parameter**
* noise density
* bias random walk
Using Allan analyzing tool `imu_utils <https://github.com/gaowenliang/imu_utils>`_, We can get the characteristics of above imu data,and to format the output as ``imu.yaml``
.. code-block:: bash
#Accelerometers
accelerometer_noise_density: 0.02680146180736048 #Noise density (continuous-time)
accelerometer_random_walk: 0.0026296086159332804 #Bias random walk
#Gyroscopes
gyroscope_noise_density: 0.008882328296710996 #Noise density (continuous-time)
gyroscope_random_walk: 0.00037956578292701033 #Bias random walk
rostopic: /mynteye/imu/data_raw #the IMU ROS topic
update_rate: 200.0 #Hz (for discretization of the values above)
Calibrate the pose relationship between left and right camera
--------------------------------------------------------------
* Collect calibration images: kalibr supports the collection of the required calibration images through two ways:by ``rosbag`` or collect offline images . Using ``rosbag`` here for convenience,Reference `link <https://github.com/ethz-asl/kalibr/wiki/bag-format>`_ for collecting images.
* Method of collecting images by ``rosbag`` :fix mynteye camera,move ``aprilgrid`` calibration board in the camera field of view.
* To increase the calibration time,try to use image acquisition data with lower frame rate,kalibr recommends using ``4Hz`` frame rate,here uses ``10hz`` .
* MYNTEYE S series camera offers images at least 10Hz,You can use `topic_tools <http://wiki.ros.org/topic_tools/throttle>`_ to modify frequency,because using 10Hz requires more calibration time.
* Record ``static.bag`` : After fix the mynteye camera,start `wrapper <https://github.com/slightech/MYNT-EYE-S-SDK>`_, record the topic of the left and right images to ``static.bag`` .
.. code-block:: bash
$ source wrappers/ros/devel/setup.bash
$ roslaunch mynt_eye_ros_wrapper display.launch
$ cd ~
$ mkdir -p bag
$ cd bag
$ rosbag record -O static_10hz /mynteye/left/image_raw /mynteye/right/image_raw #recommand use 10hz,you can also use topic_tools to publish 4hz.
* kalibr calibration:
.. code-block:: bash
$ kalibr_calibrate_cameras --target aprilgrid.yaml --bag ~/bag/static_10hz.bag --models pinhole-radtan pinhole-radtan --topics /mynteye/left/image_raw /mynteye/right/image_raw
View parameters' meanings by kalibr_calibrate_cameras command:
.. code-block:: bash
$ kalibr_calibrate_cameras --h
Calibrate the intrinsics and extrinsics of a camera system with non-shared
overlapping field of view.
usage:
Example usage to calibrate a camera system with two cameras using an aprilgrid.
cam0: omnidirection model with radial-tangential distortion
cam1: pinhole model with equidistant distortion
kalibr_calibrate_cameras --models omni-radtan pinhole-equi --target aprilgrid.yaml \
--bag MYROSBAG.bag --topics /cam0/image_raw /cam1/image_raw
example aprilgrid.yaml:
target_type: 'aprilgrid'
tagCols: 6
tagRows: 6
tagSize: 0.088 #m
tagSpacing: 0.3 #percent of tagSize
optional arguments:
-h, --help show this help message and exit
--models MODELS [MODELS ...]
The camera model ['pinhole-radtan', 'pinhole-equi',
'omni-radtan', 'pinhole-fov'] to estimate
Data source:
--bag BAGFILE The bag file with the data
--topics TOPICS [TOPICS ...]
The list of image topics
--bag-from-to bag_from_to bag_from_to
Use the bag data starting from up to this time [s]
Calibration target configuration:
--target TARGETYAML Calibration target configuration as yaml file
Image synchronization:
--approx-sync MAX_DELTA_APPROXSYNC
Time tolerance for approximate image synchronization
[s] (default: 0.02)
Calibrator settings:
--qr-tol QRTOL The tolerance on the factors of the QR decomposition
(default: 0.02)
--mi-tol MITOL The tolerance on the mutual information for adding an
image. Higher means fewer images will be added. Use -1
to force all images. (default: 0.2)
--no-shuffle Do not shuffle the dataset processing order
Outlier filtering options:
--no-outliers-removal
Disable corner outlier filtering
--no-final-filtering Disable filtering after all views have been processed.
--min-views-outlier MINVIEWOUTLIER
Number of raw views to initialize statistics (default:
20)
--use-blakezisserman Enable the Blake-Zisserman m-estimator
--plot-outliers Plot the detect outliers during extraction (this could
be slow)
Output options:
--verbose Enable (really) verbose output (disables plots)
--show-extraction Show the calibration target extraction. (disables
plots)
--plot Plot during calibration (this could be slow).
--dont-show-report Do not show the report on screen after calibration.
Output the following three files after finish calibration:
* ``camchain-homezhangsbagstatic_10hz.yaml``
* ``report-cam-homezhangsbagstatic_10hz.pdf``
* ``results-cam-homezhangsbagstatic_10hz.txt``
.. tip::
If you use camera parameters in Vins,it would be better to choose the pinhole-equi model or the omni-radtan model.If you use camera parameters in Maplab,please choose pinhole-equi model
Calibrate the pose relationship between camera and IMU coordinate system
-------------------------------------------------------------------------
* **Collect calibration data**as calibrate the pose relationship of camera,Kalibr supports two ways to collect data,we still use ``rosbag`` here.
* Method of collecting image: fix ``apilgrid`` calibration board, move camera
* Make sure that the data collected is good:the brightness of the calibration board should be appropriate,too bright or too dark can't guarantee the quality of data,meanwhile do not shake too fast to avoid blurring of the image.
* Set the imu publishing frequency to 200Hz,image to 20Hz(recommended by kalibr)
* Fully motivate each axis of the imu,for example ,3 actions on each axis,then in the \"8-shaped\" motion
* Record camera and imu as ``dynamic.bag``.
.. code-block:: bash
$ roslaunch mynt_eye_ros_wrapper display.launch
$ cd bag
$ rosbag record -O dynamic /mynteye/left/image_raw /mynteye/right/image_raw /mynteye/imu/data_raw #remember set image hz to 20hz, imu hz to 200hz
* kalibr calibration:
.. code-block:: bash
$ kalibr_calibrate_imu_camera --cam camchain-homezhangsbagstatic_10hz.yaml --target aprilgrid.yaml --imu imu.yaml --time-calibration --bag ~/bag/dynamic.bag
View the parameters' meanings by kalibr_calibrate_imu_camera command
.. code-block:: bash
$ kalibr_calibrate_imu_camera --h
Calibrate the spatial and temporal parameters of an IMU to a camera chain.
usage:
Example usage to calibrate a camera system against an IMU using an aprilgrid
with temporal calibration enabled.
kalibr_calibrate_imu_camera --bag MYROSBAG.bag --cam camchain.yaml --imu imu.yaml \
--target aprilgrid.yaml --time-calibration
camchain.yaml: is the camera-system calibration output of the multiple-camera
calibratin tool (kalibr_calibrate_cameras)
example aprilgrid.yaml: | example imu.yaml: (ADIS16448)
target_type: 'aprilgrid' | accelerometer_noise_density: 0.006
tagCols: 6 | accelerometer_random_walk: 0.0002
tagRows: 6 | gyroscope_noise_density: 0.0004
tagSize: 0.088 | gyroscope_random_walk: 4.0e-06
tagSpacing: 0.3 | update_rate: 200.0
optional arguments:
-h, --help show this help message and exit
Dataset source:
--bag BAGFILE Ros bag file containing image and imu data (rostopics
specified in the yamls)
--bag-from-to bag_from_to bag_from_to
Use the bag data starting from up to this time [s]
--perform-synchronization
Perform a clock synchronization according to 'Clock
synchronization algorithms for network measurements'
by Zhang et al. (2002).
Camera system configuration:
--cams CHAIN_YAML Camera system configuration as yaml file
--recompute-camera-chain-extrinsics
Recompute the camera chain extrinsics. This option is
exclusively recommended for debugging purposes in
order to identify problems with the camera chain
extrinsics.
--reprojection-sigma REPROJECTION_SIGMA
Standard deviation of the distribution of reprojected
corner points [px]. (default: 1.0)
IMU configuration:
--imu IMU_YAMLS [IMU_YAMLS ...]
Yaml files holding the IMU noise parameters. The first
IMU will be the reference IMU.
--imu-delay-by-correlation
Estimate the delay between multiple IMUs by
correlation. By default, no temporal calibration
between IMUs will be performed.
--imu-models IMU_MODELS [IMU_MODELS ...]
The IMU models to estimate. Currently supported are
'calibrated', 'scale-misalignment' and 'scale-
misalignment-size-effect'.
Calibration target:
--target TARGET_YAML Calibration target configuration as yaml file
Optimization options:
--time-calibration Enable the temporal calibration
--max-iter MAX_ITER Max. iterations (default: 30)
--recover-covariance Recover the covariance of the design variables.
--timeoffset-padding TIMEOFFSET_PADDING
Maximum range in which the timeoffset may change
during estimation [s] (default: 0.01)
Output options:
--show-extraction Show the calibration target extraction. (disables
plots)
--extraction-stepping
Show each image during calibration target extraction
(disables plots)
--verbose Verbose output (disables plots)
--dont-show-report Do not show the report on screen after calibration.
Output the follwing 4 files after finish calibration:
* ``camchain-imucam-homezhangsbagdynamic.yaml``
* ``imu-homezhangsbagdynamatic.yaml``
* ``report-imucam-homezhangsbagdynamic.pdf``
* ``results-imucam-homezhangsbagdynamic.yaml``