399 lines
13 KiB
C++
399 lines
13 KiB
C++
// Ceres Solver - A fast non-linear least squares minimizer
|
|
// Copyright 2015 Google Inc. All rights reserved.
|
|
// http://ceres-solver.org/
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
// * Neither the name of Google Inc. nor the names of its contributors may be
|
|
// used to endorse or promote products derived from this software without
|
|
// specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
|
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
// POSSIBILITY OF SUCH DAMAGE.
|
|
//
|
|
// Author: moll.markus@arcor.de (Markus Moll)
|
|
// sameeragarwal@google.com (Sameer Agarwal)
|
|
|
|
#include "ceres/polynomial.h"
|
|
|
|
#include <cmath>
|
|
#include <cstddef>
|
|
#include <vector>
|
|
|
|
#include "Eigen/Dense"
|
|
#include "ceres/internal/port.h"
|
|
#include "ceres/stringprintf.h"
|
|
#include "glog/logging.h"
|
|
|
|
namespace ceres {
|
|
namespace internal {
|
|
|
|
using std::string;
|
|
using std::vector;
|
|
|
|
namespace {
|
|
|
|
// Balancing function as described by B. N. Parlett and C. Reinsch,
|
|
// "Balancing a Matrix for Calculation of Eigenvalues and Eigenvectors".
|
|
// In: Numerische Mathematik, Volume 13, Number 4 (1969), 293-304,
|
|
// Springer Berlin / Heidelberg. DOI: 10.1007/BF02165404
|
|
void BalanceCompanionMatrix(Matrix* companion_matrix_ptr) {
|
|
CHECK_NOTNULL(companion_matrix_ptr);
|
|
Matrix& companion_matrix = *companion_matrix_ptr;
|
|
Matrix companion_matrix_offdiagonal = companion_matrix;
|
|
companion_matrix_offdiagonal.diagonal().setZero();
|
|
|
|
const int degree = companion_matrix.rows();
|
|
|
|
// gamma <= 1 controls how much a change in the scaling has to
|
|
// lower the 1-norm of the companion matrix to be accepted.
|
|
//
|
|
// gamma = 1 seems to lead to cycles (numerical issues?), so
|
|
// we set it slightly lower.
|
|
const double gamma = 0.9;
|
|
|
|
// Greedily scale row/column pairs until there is no change.
|
|
bool scaling_has_changed;
|
|
do {
|
|
scaling_has_changed = false;
|
|
|
|
for (int i = 0; i < degree; ++i) {
|
|
const double row_norm = companion_matrix_offdiagonal.row(i).lpNorm<1>();
|
|
const double col_norm = companion_matrix_offdiagonal.col(i).lpNorm<1>();
|
|
|
|
// Decompose row_norm/col_norm into mantissa * 2^exponent,
|
|
// where 0.5 <= mantissa < 1. Discard mantissa (return value
|
|
// of frexp), as only the exponent is needed.
|
|
int exponent = 0;
|
|
std::frexp(row_norm / col_norm, &exponent);
|
|
exponent /= 2;
|
|
|
|
if (exponent != 0) {
|
|
const double scaled_col_norm = std::ldexp(col_norm, exponent);
|
|
const double scaled_row_norm = std::ldexp(row_norm, -exponent);
|
|
if (scaled_col_norm + scaled_row_norm < gamma * (col_norm + row_norm)) {
|
|
// Accept the new scaling. (Multiplication by powers of 2 should not
|
|
// introduce rounding errors (ignoring non-normalized numbers and
|
|
// over- or underflow))
|
|
scaling_has_changed = true;
|
|
companion_matrix_offdiagonal.row(i) *= std::ldexp(1.0, -exponent);
|
|
companion_matrix_offdiagonal.col(i) *= std::ldexp(1.0, exponent);
|
|
}
|
|
}
|
|
}
|
|
} while (scaling_has_changed);
|
|
|
|
companion_matrix_offdiagonal.diagonal() = companion_matrix.diagonal();
|
|
companion_matrix = companion_matrix_offdiagonal;
|
|
VLOG(3) << "Balanced companion matrix is\n" << companion_matrix;
|
|
}
|
|
|
|
void BuildCompanionMatrix(const Vector& polynomial,
|
|
Matrix* companion_matrix_ptr) {
|
|
CHECK_NOTNULL(companion_matrix_ptr);
|
|
Matrix& companion_matrix = *companion_matrix_ptr;
|
|
|
|
const int degree = polynomial.size() - 1;
|
|
|
|
companion_matrix.resize(degree, degree);
|
|
companion_matrix.setZero();
|
|
companion_matrix.diagonal(-1).setOnes();
|
|
companion_matrix.col(degree - 1) = -polynomial.reverse().head(degree);
|
|
}
|
|
|
|
// Remove leading terms with zero coefficients.
|
|
Vector RemoveLeadingZeros(const Vector& polynomial_in) {
|
|
int i = 0;
|
|
while (i < (polynomial_in.size() - 1) && polynomial_in(i) == 0.0) {
|
|
++i;
|
|
}
|
|
return polynomial_in.tail(polynomial_in.size() - i);
|
|
}
|
|
|
|
void FindLinearPolynomialRoots(const Vector& polynomial,
|
|
Vector* real,
|
|
Vector* imaginary) {
|
|
CHECK_EQ(polynomial.size(), 2);
|
|
if (real != NULL) {
|
|
real->resize(1);
|
|
(*real)(0) = -polynomial(1) / polynomial(0);
|
|
}
|
|
|
|
if (imaginary != NULL) {
|
|
imaginary->setZero(1);
|
|
}
|
|
}
|
|
|
|
void FindQuadraticPolynomialRoots(const Vector& polynomial,
|
|
Vector* real,
|
|
Vector* imaginary) {
|
|
CHECK_EQ(polynomial.size(), 3);
|
|
const double a = polynomial(0);
|
|
const double b = polynomial(1);
|
|
const double c = polynomial(2);
|
|
const double D = b * b - 4 * a * c;
|
|
const double sqrt_D = sqrt(fabs(D));
|
|
if (real != NULL) {
|
|
real->setZero(2);
|
|
}
|
|
if (imaginary != NULL) {
|
|
imaginary->setZero(2);
|
|
}
|
|
|
|
// Real roots.
|
|
if (D >= 0) {
|
|
if (real != NULL) {
|
|
// Stable quadratic roots according to BKP Horn.
|
|
// http://people.csail.mit.edu/bkph/articles/Quadratics.pdf
|
|
if (b >= 0) {
|
|
(*real)(0) = (-b - sqrt_D) / (2.0 * a);
|
|
(*real)(1) = (2.0 * c) / (-b - sqrt_D);
|
|
} else {
|
|
(*real)(0) = (2.0 * c) / (-b + sqrt_D);
|
|
(*real)(1) = (-b + sqrt_D) / (2.0 * a);
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
// Use the normal quadratic formula for the complex case.
|
|
if (real != NULL) {
|
|
(*real)(0) = -b / (2.0 * a);
|
|
(*real)(1) = -b / (2.0 * a);
|
|
}
|
|
if (imaginary != NULL) {
|
|
(*imaginary)(0) = sqrt_D / (2.0 * a);
|
|
(*imaginary)(1) = -sqrt_D / (2.0 * a);
|
|
}
|
|
}
|
|
} // namespace
|
|
|
|
bool FindPolynomialRoots(const Vector& polynomial_in,
|
|
Vector* real,
|
|
Vector* imaginary) {
|
|
if (polynomial_in.size() == 0) {
|
|
LOG(ERROR) << "Invalid polynomial of size 0 passed to FindPolynomialRoots";
|
|
return false;
|
|
}
|
|
|
|
Vector polynomial = RemoveLeadingZeros(polynomial_in);
|
|
const int degree = polynomial.size() - 1;
|
|
|
|
VLOG(3) << "Input polynomial: " << polynomial_in.transpose();
|
|
if (polynomial.size() != polynomial_in.size()) {
|
|
VLOG(3) << "Trimmed polynomial: " << polynomial.transpose();
|
|
}
|
|
|
|
// Is the polynomial constant?
|
|
if (degree == 0) {
|
|
LOG(WARNING) << "Trying to extract roots from a constant "
|
|
<< "polynomial in FindPolynomialRoots";
|
|
// We return true with no roots, not false, as if the polynomial is constant
|
|
// it is correct that there are no roots. It is not the case that they were
|
|
// there, but that we have failed to extract them.
|
|
return true;
|
|
}
|
|
|
|
// Linear
|
|
if (degree == 1) {
|
|
FindLinearPolynomialRoots(polynomial, real, imaginary);
|
|
return true;
|
|
}
|
|
|
|
// Quadratic
|
|
if (degree == 2) {
|
|
FindQuadraticPolynomialRoots(polynomial, real, imaginary);
|
|
return true;
|
|
}
|
|
|
|
// The degree is now known to be at least 3. For cubic or higher
|
|
// roots we use the method of companion matrices.
|
|
|
|
// Divide by leading term
|
|
const double leading_term = polynomial(0);
|
|
polynomial /= leading_term;
|
|
|
|
// Build and balance the companion matrix to the polynomial.
|
|
Matrix companion_matrix(degree, degree);
|
|
BuildCompanionMatrix(polynomial, &companion_matrix);
|
|
BalanceCompanionMatrix(&companion_matrix);
|
|
|
|
// Find its (complex) eigenvalues.
|
|
Eigen::EigenSolver<Matrix> solver(companion_matrix, false);
|
|
if (solver.info() != Eigen::Success) {
|
|
LOG(ERROR) << "Failed to extract eigenvalues from companion matrix.";
|
|
return false;
|
|
}
|
|
|
|
// Output roots
|
|
if (real != NULL) {
|
|
*real = solver.eigenvalues().real();
|
|
} else {
|
|
LOG(WARNING) << "NULL pointer passed as real argument to "
|
|
<< "FindPolynomialRoots. Real parts of the roots will not "
|
|
<< "be returned.";
|
|
}
|
|
if (imaginary != NULL) {
|
|
*imaginary = solver.eigenvalues().imag();
|
|
}
|
|
return true;
|
|
}
|
|
|
|
Vector DifferentiatePolynomial(const Vector& polynomial) {
|
|
const int degree = polynomial.rows() - 1;
|
|
CHECK_GE(degree, 0);
|
|
|
|
// Degree zero polynomials are constants, and their derivative does
|
|
// not result in a smaller degree polynomial, just a degree zero
|
|
// polynomial with value zero.
|
|
if (degree == 0) {
|
|
return Eigen::VectorXd::Zero(1);
|
|
}
|
|
|
|
Vector derivative(degree);
|
|
for (int i = 0; i < degree; ++i) {
|
|
derivative(i) = (degree - i) * polynomial(i);
|
|
}
|
|
|
|
return derivative;
|
|
}
|
|
|
|
void MinimizePolynomial(const Vector& polynomial,
|
|
const double x_min,
|
|
const double x_max,
|
|
double* optimal_x,
|
|
double* optimal_value) {
|
|
// Find the minimum of the polynomial at the two ends.
|
|
//
|
|
// We start by inspecting the middle of the interval. Technically
|
|
// this is not needed, but we do this to make this code as close to
|
|
// the minFunc package as possible.
|
|
*optimal_x = (x_min + x_max) / 2.0;
|
|
*optimal_value = EvaluatePolynomial(polynomial, *optimal_x);
|
|
|
|
const double x_min_value = EvaluatePolynomial(polynomial, x_min);
|
|
if (x_min_value < *optimal_value) {
|
|
*optimal_value = x_min_value;
|
|
*optimal_x = x_min;
|
|
}
|
|
|
|
const double x_max_value = EvaluatePolynomial(polynomial, x_max);
|
|
if (x_max_value < *optimal_value) {
|
|
*optimal_value = x_max_value;
|
|
*optimal_x = x_max;
|
|
}
|
|
|
|
// If the polynomial is linear or constant, we are done.
|
|
if (polynomial.rows() <= 2) {
|
|
return;
|
|
}
|
|
|
|
const Vector derivative = DifferentiatePolynomial(polynomial);
|
|
Vector roots_real;
|
|
if (!FindPolynomialRoots(derivative, &roots_real, NULL)) {
|
|
LOG(WARNING) << "Unable to find the critical points of "
|
|
<< "the interpolating polynomial.";
|
|
return;
|
|
}
|
|
|
|
// This is a bit of an overkill, as some of the roots may actually
|
|
// have a complex part, but its simpler to just check these values.
|
|
for (int i = 0; i < roots_real.rows(); ++i) {
|
|
const double root = roots_real(i);
|
|
if ((root < x_min) || (root > x_max)) {
|
|
continue;
|
|
}
|
|
|
|
const double value = EvaluatePolynomial(polynomial, root);
|
|
if (value < *optimal_value) {
|
|
*optimal_value = value;
|
|
*optimal_x = root;
|
|
}
|
|
}
|
|
}
|
|
|
|
string FunctionSample::ToDebugString() const {
|
|
return StringPrintf("[x: %.8e, value: %.8e, gradient: %.8e, "
|
|
"value_is_valid: %d, gradient_is_valid: %d]",
|
|
x, value, gradient, value_is_valid, gradient_is_valid);
|
|
}
|
|
|
|
Vector FindInterpolatingPolynomial(const vector<FunctionSample>& samples) {
|
|
const int num_samples = samples.size();
|
|
int num_constraints = 0;
|
|
for (int i = 0; i < num_samples; ++i) {
|
|
if (samples[i].value_is_valid) {
|
|
++num_constraints;
|
|
}
|
|
if (samples[i].gradient_is_valid) {
|
|
++num_constraints;
|
|
}
|
|
}
|
|
|
|
const int degree = num_constraints - 1;
|
|
|
|
Matrix lhs = Matrix::Zero(num_constraints, num_constraints);
|
|
Vector rhs = Vector::Zero(num_constraints);
|
|
|
|
int row = 0;
|
|
for (int i = 0; i < num_samples; ++i) {
|
|
const FunctionSample& sample = samples[i];
|
|
if (sample.value_is_valid) {
|
|
for (int j = 0; j <= degree; ++j) {
|
|
lhs(row, j) = pow(sample.x, degree - j);
|
|
}
|
|
rhs(row) = sample.value;
|
|
++row;
|
|
}
|
|
|
|
if (sample.gradient_is_valid) {
|
|
for (int j = 0; j < degree; ++j) {
|
|
lhs(row, j) = (degree - j) * pow(sample.x, degree - j - 1);
|
|
}
|
|
rhs(row) = sample.gradient;
|
|
++row;
|
|
}
|
|
}
|
|
|
|
return lhs.fullPivLu().solve(rhs);
|
|
}
|
|
|
|
void MinimizeInterpolatingPolynomial(const vector<FunctionSample>& samples,
|
|
double x_min,
|
|
double x_max,
|
|
double* optimal_x,
|
|
double* optimal_value) {
|
|
const Vector polynomial = FindInterpolatingPolynomial(samples);
|
|
MinimizePolynomial(polynomial, x_min, x_max, optimal_x, optimal_value);
|
|
for (int i = 0; i < samples.size(); ++i) {
|
|
const FunctionSample& sample = samples[i];
|
|
if ((sample.x < x_min) || (sample.x > x_max)) {
|
|
continue;
|
|
}
|
|
|
|
const double value = EvaluatePolynomial(polynomial, sample.x);
|
|
if (value < *optimal_value) {
|
|
*optimal_x = sample.x;
|
|
*optimal_value = value;
|
|
}
|
|
}
|
|
}
|
|
|
|
} // namespace internal
|
|
} // namespace ceres
|