77 lines
2.4 KiB
Plaintext
77 lines
2.4 KiB
Plaintext
NIST/ITL StRD
|
|
Dataset Name: MGH10 (MGH10.dat)
|
|
|
|
File Format: ASCII
|
|
Starting Values (lines 41 to 43)
|
|
Certified Values (lines 41 to 48)
|
|
Data (lines 61 to 76)
|
|
|
|
Procedure: Nonlinear Least Squares Regression
|
|
|
|
Description: This problem was found to be difficult for some very
|
|
good algorithms.
|
|
|
|
See More, J. J., Garbow, B. S., and Hillstrom, K. E.
|
|
(1981). Testing unconstrained optimization software.
|
|
ACM Transactions on Mathematical Software. 7(1):
|
|
pp. 17-41.
|
|
|
|
Reference: Meyer, R. R. (1970).
|
|
Theoretical and computational aspects of nonlinear
|
|
regression. In Nonlinear Programming, Rosen,
|
|
Mangasarian and Ritter (Eds).
|
|
New York, NY: Academic Press, pp. 465-486.
|
|
|
|
Data: 1 Response (y)
|
|
1 Predictor (x)
|
|
16 Observations
|
|
Higher Level of Difficulty
|
|
Generated Data
|
|
|
|
Model: Exponential Class
|
|
3 Parameters (b1 to b3)
|
|
|
|
y = b1 * exp[b2/(x+b3)] + e
|
|
|
|
|
|
|
|
Starting values Certified Values
|
|
|
|
Start 1 Start 2 Parameter Standard Deviation
|
|
b1 = 2 0.02 5.6096364710E-03 1.5687892471E-04
|
|
b2 = 400000 4000 6.1813463463E+03 2.3309021107E+01
|
|
b3 = 25000 250 3.4522363462E+02 7.8486103508E-01
|
|
|
|
Residual Sum of Squares: 8.7945855171E+01
|
|
Residual Standard Deviation: 2.6009740065E+00
|
|
Degrees of Freedom: 13
|
|
Number of Observations: 16
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Data: y x
|
|
3.478000E+04 5.000000E+01
|
|
2.861000E+04 5.500000E+01
|
|
2.365000E+04 6.000000E+01
|
|
1.963000E+04 6.500000E+01
|
|
1.637000E+04 7.000000E+01
|
|
1.372000E+04 7.500000E+01
|
|
1.154000E+04 8.000000E+01
|
|
9.744000E+03 8.500000E+01
|
|
8.261000E+03 9.000000E+01
|
|
7.030000E+03 9.500000E+01
|
|
6.005000E+03 1.000000E+02
|
|
5.147000E+03 1.050000E+02
|
|
4.427000E+03 1.100000E+02
|
|
3.820000E+03 1.150000E+02
|
|
3.307000E+03 1.200000E+02
|
|
2.872000E+03 1.250000E+02
|