MYNT-EYE-S-SDK/3rdparty/eigen3/Eigen/src/QR/ColPivHouseholderQR.h
2019-01-03 16:25:18 +08:00

578 lines
22 KiB
C++

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_COLPIVOTINGHOUSEHOLDERQR_H
#define EIGEN_COLPIVOTINGHOUSEHOLDERQR_H
namespace Eigen {
/** \ingroup QR_Module
*
* \class ColPivHouseholderQR
*
* \brief Householder rank-revealing QR decomposition of a matrix with column-pivoting
*
* \param MatrixType the type of the matrix of which we are computing the QR decomposition
*
* This class performs a rank-revealing QR decomposition of a matrix \b A into matrices \b P, \b Q and \b R
* such that
* \f[
* \mathbf{A} \, \mathbf{P} = \mathbf{Q} \, \mathbf{R}
* \f]
* by using Householder transformations. Here, \b P is a permutation matrix, \b Q a unitary matrix and \b R an
* upper triangular matrix.
*
* This decomposition performs column pivoting in order to be rank-revealing and improve
* numerical stability. It is slower than HouseholderQR, and faster than FullPivHouseholderQR.
*
* \sa MatrixBase::colPivHouseholderQr()
*/
template<typename _MatrixType> class ColPivHouseholderQR
{
public:
typedef _MatrixType MatrixType;
enum {
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
Options = MatrixType::Options,
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
};
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
typedef typename MatrixType::Index Index;
typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime, Options, MaxRowsAtCompileTime, MaxRowsAtCompileTime> MatrixQType;
typedef typename internal::plain_diag_type<MatrixType>::type HCoeffsType;
typedef PermutationMatrix<ColsAtCompileTime, MaxColsAtCompileTime> PermutationType;
typedef typename internal::plain_row_type<MatrixType, Index>::type IntRowVectorType;
typedef typename internal::plain_row_type<MatrixType>::type RowVectorType;
typedef typename internal::plain_row_type<MatrixType, RealScalar>::type RealRowVectorType;
typedef HouseholderSequence<MatrixType,typename internal::remove_all<typename HCoeffsType::ConjugateReturnType>::type> HouseholderSequenceType;
private:
typedef typename PermutationType::Index PermIndexType;
public:
/**
* \brief Default Constructor.
*
* The default constructor is useful in cases in which the user intends to
* perform decompositions via ColPivHouseholderQR::compute(const MatrixType&).
*/
ColPivHouseholderQR()
: m_qr(),
m_hCoeffs(),
m_colsPermutation(),
m_colsTranspositions(),
m_temp(),
m_colSqNorms(),
m_isInitialized(false),
m_usePrescribedThreshold(false) {}
/** \brief Default Constructor with memory preallocation
*
* Like the default constructor but with preallocation of the internal data
* according to the specified problem \a size.
* \sa ColPivHouseholderQR()
*/
ColPivHouseholderQR(Index rows, Index cols)
: m_qr(rows, cols),
m_hCoeffs((std::min)(rows,cols)),
m_colsPermutation(PermIndexType(cols)),
m_colsTranspositions(cols),
m_temp(cols),
m_colSqNorms(cols),
m_isInitialized(false),
m_usePrescribedThreshold(false) {}
/** \brief Constructs a QR factorization from a given matrix
*
* This constructor computes the QR factorization of the matrix \a matrix by calling
* the method compute(). It is a short cut for:
*
* \code
* ColPivHouseholderQR<MatrixType> qr(matrix.rows(), matrix.cols());
* qr.compute(matrix);
* \endcode
*
* \sa compute()
*/
ColPivHouseholderQR(const MatrixType& matrix)
: m_qr(matrix.rows(), matrix.cols()),
m_hCoeffs((std::min)(matrix.rows(),matrix.cols())),
m_colsPermutation(PermIndexType(matrix.cols())),
m_colsTranspositions(matrix.cols()),
m_temp(matrix.cols()),
m_colSqNorms(matrix.cols()),
m_isInitialized(false),
m_usePrescribedThreshold(false)
{
compute(matrix);
}
/** This method finds a solution x to the equation Ax=b, where A is the matrix of which
* *this is the QR decomposition, if any exists.
*
* \param b the right-hand-side of the equation to solve.
*
* \returns a solution.
*
* \note_about_checking_solutions
*
* \note_about_arbitrary_choice_of_solution
*
* Example: \include ColPivHouseholderQR_solve.cpp
* Output: \verbinclude ColPivHouseholderQR_solve.out
*/
template<typename Rhs>
inline const internal::solve_retval<ColPivHouseholderQR, Rhs>
solve(const MatrixBase<Rhs>& b) const
{
eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
return internal::solve_retval<ColPivHouseholderQR, Rhs>(*this, b.derived());
}
HouseholderSequenceType householderQ(void) const;
HouseholderSequenceType matrixQ(void) const
{
return householderQ();
}
/** \returns a reference to the matrix where the Householder QR decomposition is stored
*/
const MatrixType& matrixQR() const
{
eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
return m_qr;
}
/** \returns a reference to the matrix where the result Householder QR is stored
* \warning The strict lower part of this matrix contains internal values.
* Only the upper triangular part should be referenced. To get it, use
* \code matrixR().template triangularView<Upper>() \endcode
* For rank-deficient matrices, use
* \code
* matrixR().topLeftCorner(rank(), rank()).template triangularView<Upper>()
* \endcode
*/
const MatrixType& matrixR() const
{
eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
return m_qr;
}
ColPivHouseholderQR& compute(const MatrixType& matrix);
/** \returns a const reference to the column permutation matrix */
const PermutationType& colsPermutation() const
{
eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
return m_colsPermutation;
}
/** \returns the absolute value of the determinant of the matrix of which
* *this is the QR decomposition. It has only linear complexity
* (that is, O(n) where n is the dimension of the square matrix)
* as the QR decomposition has already been computed.
*
* \note This is only for square matrices.
*
* \warning a determinant can be very big or small, so for matrices
* of large enough dimension, there is a risk of overflow/underflow.
* One way to work around that is to use logAbsDeterminant() instead.
*
* \sa logAbsDeterminant(), MatrixBase::determinant()
*/
typename MatrixType::RealScalar absDeterminant() const;
/** \returns the natural log of the absolute value of the determinant of the matrix of which
* *this is the QR decomposition. It has only linear complexity
* (that is, O(n) where n is the dimension of the square matrix)
* as the QR decomposition has already been computed.
*
* \note This is only for square matrices.
*
* \note This method is useful to work around the risk of overflow/underflow that's inherent
* to determinant computation.
*
* \sa absDeterminant(), MatrixBase::determinant()
*/
typename MatrixType::RealScalar logAbsDeterminant() const;
/** \returns the rank of the matrix of which *this is the QR decomposition.
*
* \note This method has to determine which pivots should be considered nonzero.
* For that, it uses the threshold value that you can control by calling
* setThreshold(const RealScalar&).
*/
inline Index rank() const
{
using std::abs;
eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
RealScalar premultiplied_threshold = abs(m_maxpivot) * threshold();
Index result = 0;
for(Index i = 0; i < m_nonzero_pivots; ++i)
result += (abs(m_qr.coeff(i,i)) > premultiplied_threshold);
return result;
}
/** \returns the dimension of the kernel of the matrix of which *this is the QR decomposition.
*
* \note This method has to determine which pivots should be considered nonzero.
* For that, it uses the threshold value that you can control by calling
* setThreshold(const RealScalar&).
*/
inline Index dimensionOfKernel() const
{
eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
return cols() - rank();
}
/** \returns true if the matrix of which *this is the QR decomposition represents an injective
* linear map, i.e. has trivial kernel; false otherwise.
*
* \note This method has to determine which pivots should be considered nonzero.
* For that, it uses the threshold value that you can control by calling
* setThreshold(const RealScalar&).
*/
inline bool isInjective() const
{
eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
return rank() == cols();
}
/** \returns true if the matrix of which *this is the QR decomposition represents a surjective
* linear map; false otherwise.
*
* \note This method has to determine which pivots should be considered nonzero.
* For that, it uses the threshold value that you can control by calling
* setThreshold(const RealScalar&).
*/
inline bool isSurjective() const
{
eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
return rank() == rows();
}
/** \returns true if the matrix of which *this is the QR decomposition is invertible.
*
* \note This method has to determine which pivots should be considered nonzero.
* For that, it uses the threshold value that you can control by calling
* setThreshold(const RealScalar&).
*/
inline bool isInvertible() const
{
eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
return isInjective() && isSurjective();
}
/** \returns the inverse of the matrix of which *this is the QR decomposition.
*
* \note If this matrix is not invertible, the returned matrix has undefined coefficients.
* Use isInvertible() to first determine whether this matrix is invertible.
*/
inline const
internal::solve_retval<ColPivHouseholderQR, typename MatrixType::IdentityReturnType>
inverse() const
{
eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
return internal::solve_retval<ColPivHouseholderQR,typename MatrixType::IdentityReturnType>
(*this, MatrixType::Identity(m_qr.rows(), m_qr.cols()));
}
inline Index rows() const { return m_qr.rows(); }
inline Index cols() const { return m_qr.cols(); }
/** \returns a const reference to the vector of Householder coefficients used to represent the factor \c Q.
*
* For advanced uses only.
*/
const HCoeffsType& hCoeffs() const { return m_hCoeffs; }
/** Allows to prescribe a threshold to be used by certain methods, such as rank(),
* who need to determine when pivots are to be considered nonzero. This is not used for the
* QR decomposition itself.
*
* When it needs to get the threshold value, Eigen calls threshold(). By default, this
* uses a formula to automatically determine a reasonable threshold.
* Once you have called the present method setThreshold(const RealScalar&),
* your value is used instead.
*
* \param threshold The new value to use as the threshold.
*
* A pivot will be considered nonzero if its absolute value is strictly greater than
* \f$ \vert pivot \vert \leqslant threshold \times \vert maxpivot \vert \f$
* where maxpivot is the biggest pivot.
*
* If you want to come back to the default behavior, call setThreshold(Default_t)
*/
ColPivHouseholderQR& setThreshold(const RealScalar& threshold)
{
m_usePrescribedThreshold = true;
m_prescribedThreshold = threshold;
return *this;
}
/** Allows to come back to the default behavior, letting Eigen use its default formula for
* determining the threshold.
*
* You should pass the special object Eigen::Default as parameter here.
* \code qr.setThreshold(Eigen::Default); \endcode
*
* See the documentation of setThreshold(const RealScalar&).
*/
ColPivHouseholderQR& setThreshold(Default_t)
{
m_usePrescribedThreshold = false;
return *this;
}
/** Returns the threshold that will be used by certain methods such as rank().
*
* See the documentation of setThreshold(const RealScalar&).
*/
RealScalar threshold() const
{
eigen_assert(m_isInitialized || m_usePrescribedThreshold);
return m_usePrescribedThreshold ? m_prescribedThreshold
// this formula comes from experimenting (see "LU precision tuning" thread on the list)
// and turns out to be identical to Higham's formula used already in LDLt.
: NumTraits<Scalar>::epsilon() * RealScalar(m_qr.diagonalSize());
}
/** \returns the number of nonzero pivots in the QR decomposition.
* Here nonzero is meant in the exact sense, not in a fuzzy sense.
* So that notion isn't really intrinsically interesting, but it is
* still useful when implementing algorithms.
*
* \sa rank()
*/
inline Index nonzeroPivots() const
{
eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
return m_nonzero_pivots;
}
/** \returns the absolute value of the biggest pivot, i.e. the biggest
* diagonal coefficient of R.
*/
RealScalar maxPivot() const { return m_maxpivot; }
/** \brief Reports whether the QR factorization was succesful.
*
* \note This function always returns \c Success. It is provided for compatibility
* with other factorization routines.
* \returns \c Success
*/
ComputationInfo info() const
{
eigen_assert(m_isInitialized && "Decomposition is not initialized.");
return Success;
}
protected:
static void check_template_parameters()
{
EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
}
MatrixType m_qr;
HCoeffsType m_hCoeffs;
PermutationType m_colsPermutation;
IntRowVectorType m_colsTranspositions;
RowVectorType m_temp;
RealRowVectorType m_colSqNorms;
bool m_isInitialized, m_usePrescribedThreshold;
RealScalar m_prescribedThreshold, m_maxpivot;
Index m_nonzero_pivots;
Index m_det_pq;
};
template<typename MatrixType>
typename MatrixType::RealScalar ColPivHouseholderQR<MatrixType>::absDeterminant() const
{
using std::abs;
eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!");
return abs(m_qr.diagonal().prod());
}
template<typename MatrixType>
typename MatrixType::RealScalar ColPivHouseholderQR<MatrixType>::logAbsDeterminant() const
{
eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!");
return m_qr.diagonal().cwiseAbs().array().log().sum();
}
/** Performs the QR factorization of the given matrix \a matrix. The result of
* the factorization is stored into \c *this, and a reference to \c *this
* is returned.
*
* \sa class ColPivHouseholderQR, ColPivHouseholderQR(const MatrixType&)
*/
template<typename MatrixType>
ColPivHouseholderQR<MatrixType>& ColPivHouseholderQR<MatrixType>::compute(const MatrixType& matrix)
{
check_template_parameters();
using std::abs;
Index rows = matrix.rows();
Index cols = matrix.cols();
Index size = matrix.diagonalSize();
// the column permutation is stored as int indices, so just to be sure:
eigen_assert(cols<=NumTraits<int>::highest());
m_qr = matrix;
m_hCoeffs.resize(size);
m_temp.resize(cols);
m_colsTranspositions.resize(matrix.cols());
Index number_of_transpositions = 0;
m_colSqNorms.resize(cols);
for(Index k = 0; k < cols; ++k)
m_colSqNorms.coeffRef(k) = m_qr.col(k).squaredNorm();
RealScalar threshold_helper = m_colSqNorms.maxCoeff() * numext::abs2(NumTraits<Scalar>::epsilon()) / RealScalar(rows);
m_nonzero_pivots = size; // the generic case is that in which all pivots are nonzero (invertible case)
m_maxpivot = RealScalar(0);
for(Index k = 0; k < size; ++k)
{
// first, we look up in our table m_colSqNorms which column has the biggest squared norm
Index biggest_col_index;
RealScalar biggest_col_sq_norm = m_colSqNorms.tail(cols-k).maxCoeff(&biggest_col_index);
biggest_col_index += k;
// since our table m_colSqNorms accumulates imprecision at every step, we must now recompute
// the actual squared norm of the selected column.
// Note that not doing so does result in solve() sometimes returning inf/nan values
// when running the unit test with 1000 repetitions.
biggest_col_sq_norm = m_qr.col(biggest_col_index).tail(rows-k).squaredNorm();
// we store that back into our table: it can't hurt to correct our table.
m_colSqNorms.coeffRef(biggest_col_index) = biggest_col_sq_norm;
// Track the number of meaningful pivots but do not stop the decomposition to make
// sure that the initial matrix is properly reproduced. See bug 941.
if(m_nonzero_pivots==size && biggest_col_sq_norm < threshold_helper * RealScalar(rows-k))
m_nonzero_pivots = k;
// apply the transposition to the columns
m_colsTranspositions.coeffRef(k) = biggest_col_index;
if(k != biggest_col_index) {
m_qr.col(k).swap(m_qr.col(biggest_col_index));
std::swap(m_colSqNorms.coeffRef(k), m_colSqNorms.coeffRef(biggest_col_index));
++number_of_transpositions;
}
// generate the householder vector, store it below the diagonal
RealScalar beta;
m_qr.col(k).tail(rows-k).makeHouseholderInPlace(m_hCoeffs.coeffRef(k), beta);
// apply the householder transformation to the diagonal coefficient
m_qr.coeffRef(k,k) = beta;
// remember the maximum absolute value of diagonal coefficients
if(abs(beta) > m_maxpivot) m_maxpivot = abs(beta);
// apply the householder transformation
m_qr.bottomRightCorner(rows-k, cols-k-1)
.applyHouseholderOnTheLeft(m_qr.col(k).tail(rows-k-1), m_hCoeffs.coeffRef(k), &m_temp.coeffRef(k+1));
// update our table of squared norms of the columns
m_colSqNorms.tail(cols-k-1) -= m_qr.row(k).tail(cols-k-1).cwiseAbs2();
}
m_colsPermutation.setIdentity(PermIndexType(cols));
for(PermIndexType k = 0; k < size/*m_nonzero_pivots*/; ++k)
m_colsPermutation.applyTranspositionOnTheRight(k, PermIndexType(m_colsTranspositions.coeff(k)));
m_det_pq = (number_of_transpositions%2) ? -1 : 1;
m_isInitialized = true;
return *this;
}
namespace internal {
template<typename _MatrixType, typename Rhs>
struct solve_retval<ColPivHouseholderQR<_MatrixType>, Rhs>
: solve_retval_base<ColPivHouseholderQR<_MatrixType>, Rhs>
{
EIGEN_MAKE_SOLVE_HELPERS(ColPivHouseholderQR<_MatrixType>,Rhs)
template<typename Dest> void evalTo(Dest& dst) const
{
eigen_assert(rhs().rows() == dec().rows());
const Index cols = dec().cols(),
nonzero_pivots = dec().nonzeroPivots();
if(nonzero_pivots == 0)
{
dst.setZero();
return;
}
typename Rhs::PlainObject c(rhs());
// Note that the matrix Q = H_0^* H_1^*... so its inverse is Q^* = (H_0 H_1 ...)^T
c.applyOnTheLeft(householderSequence(dec().matrixQR(), dec().hCoeffs())
.setLength(dec().nonzeroPivots())
.transpose()
);
dec().matrixR()
.topLeftCorner(nonzero_pivots, nonzero_pivots)
.template triangularView<Upper>()
.solveInPlace(c.topRows(nonzero_pivots));
for(Index i = 0; i < nonzero_pivots; ++i) dst.row(dec().colsPermutation().indices().coeff(i)) = c.row(i);
for(Index i = nonzero_pivots; i < cols; ++i) dst.row(dec().colsPermutation().indices().coeff(i)).setZero();
}
};
} // end namespace internal
/** \returns the matrix Q as a sequence of householder transformations.
* You can extract the meaningful part only by using:
* \code qr.householderQ().setLength(qr.nonzeroPivots()) \endcode*/
template<typename MatrixType>
typename ColPivHouseholderQR<MatrixType>::HouseholderSequenceType ColPivHouseholderQR<MatrixType>
::householderQ() const
{
eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
return HouseholderSequenceType(m_qr, m_hCoeffs.conjugate());
}
/** \return the column-pivoting Householder QR decomposition of \c *this.
*
* \sa class ColPivHouseholderQR
*/
template<typename Derived>
const ColPivHouseholderQR<typename MatrixBase<Derived>::PlainObject>
MatrixBase<Derived>::colPivHouseholderQr() const
{
return ColPivHouseholderQR<PlainObject>(eval());
}
} // end namespace Eigen
#endif // EIGEN_COLPIVOTINGHOUSEHOLDERQR_H