MYNT-EYE-S-SDK/3rdparty/eigen3/Eigen/src/SparseCore/SparseBlock.h
2019-01-03 16:25:18 +08:00

624 lines
26 KiB
C++

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_SPARSE_BLOCK_H
#define EIGEN_SPARSE_BLOCK_H
namespace Eigen {
template<typename XprType, int BlockRows, int BlockCols>
class BlockImpl<XprType,BlockRows,BlockCols,true,Sparse>
: public SparseMatrixBase<Block<XprType,BlockRows,BlockCols,true> >
{
public:
typedef Block<XprType, BlockRows, BlockCols, true> BlockType;
enum { IsRowMajor = internal::traits<BlockType>::IsRowMajor };
protected:
typedef typename internal::remove_all<typename XprType::Nested>::type _MatrixTypeNested;
enum { OuterSize = IsRowMajor ? BlockRows : BlockCols };
public:
EIGEN_SPARSE_PUBLIC_INTERFACE(BlockType)
class InnerIterator: public XprType::InnerIterator
{
typedef typename BlockImpl::Index Index;
public:
inline InnerIterator(const Block<XprType, BlockRows, BlockCols, true>& xpr, Index outer)
: XprType::InnerIterator(xpr.m_matrix, xpr.m_outerStart + outer), m_outer(outer)
{}
inline Index row() const { return IsRowMajor ? m_outer : this->index(); }
inline Index col() const { return IsRowMajor ? this->index() : m_outer; }
protected:
Index m_outer;
};
class ReverseInnerIterator: public XprType::ReverseInnerIterator
{
typedef typename BlockImpl::Index Index;
public:
inline ReverseInnerIterator(const BlockType& xpr, Index outer)
: XprType::ReverseInnerIterator(xpr.m_matrix, xpr.m_outerStart + outer), m_outer(outer)
{}
inline Index row() const { return IsRowMajor ? m_outer : this->index(); }
inline Index col() const { return IsRowMajor ? this->index() : m_outer; }
protected:
Index m_outer;
};
inline BlockImpl(const XprType& xpr, int i)
: m_matrix(xpr), m_outerStart(i), m_outerSize(OuterSize)
{}
inline BlockImpl(const XprType& xpr, int startRow, int startCol, int blockRows, int blockCols)
: m_matrix(xpr), m_outerStart(IsRowMajor ? startRow : startCol), m_outerSize(IsRowMajor ? blockRows : blockCols)
{}
inline const Scalar coeff(int row, int col) const
{
return m_matrix.coeff(row + IsRowMajor ? m_outerStart : 0, col +IsRowMajor ? 0 : m_outerStart);
}
inline const Scalar coeff(int index) const
{
return m_matrix.coeff(IsRowMajor ? m_outerStart : index, IsRowMajor ? index : m_outerStart);
}
EIGEN_STRONG_INLINE Index rows() const { return IsRowMajor ? m_outerSize.value() : m_matrix.rows(); }
EIGEN_STRONG_INLINE Index cols() const { return IsRowMajor ? m_matrix.cols() : m_outerSize.value(); }
protected:
typename XprType::Nested m_matrix;
Index m_outerStart;
const internal::variable_if_dynamic<Index, OuterSize> m_outerSize;
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(BlockImpl)
private:
Index nonZeros() const;
};
/***************************************************************************
* specialisation for SparseMatrix
***************************************************************************/
template<typename _Scalar, int _Options, typename _Index, int BlockRows, int BlockCols>
class BlockImpl<SparseMatrix<_Scalar, _Options, _Index>,BlockRows,BlockCols,true,Sparse>
: public SparseMatrixBase<Block<SparseMatrix<_Scalar, _Options, _Index>,BlockRows,BlockCols,true> >
{
typedef SparseMatrix<_Scalar, _Options, _Index> SparseMatrixType;
typedef typename internal::remove_all<typename SparseMatrixType::Nested>::type _MatrixTypeNested;
typedef Block<const SparseMatrixType, BlockRows, BlockCols, true> ConstBlockType;
public:
typedef Block<SparseMatrixType, BlockRows, BlockCols, true> BlockType;
enum { IsRowMajor = internal::traits<BlockType>::IsRowMajor };
EIGEN_SPARSE_PUBLIC_INTERFACE(BlockType)
protected:
enum { OuterSize = IsRowMajor ? BlockRows : BlockCols };
public:
class InnerIterator: public SparseMatrixType::InnerIterator
{
public:
inline InnerIterator(const BlockType& xpr, Index outer)
: SparseMatrixType::InnerIterator(xpr.m_matrix, xpr.m_outerStart + outer), m_outer(outer)
{}
inline Index row() const { return IsRowMajor ? m_outer : this->index(); }
inline Index col() const { return IsRowMajor ? this->index() : m_outer; }
protected:
Index m_outer;
};
class ReverseInnerIterator: public SparseMatrixType::ReverseInnerIterator
{
public:
inline ReverseInnerIterator(const BlockType& xpr, Index outer)
: SparseMatrixType::ReverseInnerIterator(xpr.m_matrix, xpr.m_outerStart + outer), m_outer(outer)
{}
inline Index row() const { return IsRowMajor ? m_outer : this->index(); }
inline Index col() const { return IsRowMajor ? this->index() : m_outer; }
protected:
Index m_outer;
};
inline BlockImpl(const SparseMatrixType& xpr, int i)
: m_matrix(xpr), m_outerStart(i), m_outerSize(OuterSize)
{}
inline BlockImpl(const SparseMatrixType& xpr, int startRow, int startCol, int blockRows, int blockCols)
: m_matrix(xpr), m_outerStart(IsRowMajor ? startRow : startCol), m_outerSize(IsRowMajor ? blockRows : blockCols)
{}
template<typename OtherDerived>
inline BlockType& operator=(const SparseMatrixBase<OtherDerived>& other)
{
typedef typename internal::remove_all<typename SparseMatrixType::Nested>::type _NestedMatrixType;
_NestedMatrixType& matrix = const_cast<_NestedMatrixType&>(m_matrix);;
// This assignement is slow if this vector set is not empty
// and/or it is not at the end of the nonzeros of the underlying matrix.
// 1 - eval to a temporary to avoid transposition and/or aliasing issues
SparseMatrix<Scalar, IsRowMajor ? RowMajor : ColMajor, Index> tmp(other);
// 2 - let's check whether there is enough allocated memory
Index nnz = tmp.nonZeros();
Index start = m_outerStart==0 ? 0 : matrix.outerIndexPtr()[m_outerStart]; // starting position of the current block
Index end = m_matrix.outerIndexPtr()[m_outerStart+m_outerSize.value()]; // ending posiiton of the current block
Index block_size = end - start; // available room in the current block
Index tail_size = m_matrix.outerIndexPtr()[m_matrix.outerSize()] - end;
Index free_size = m_matrix.isCompressed()
? Index(matrix.data().allocatedSize()) + block_size
: block_size;
if(nnz>free_size)
{
// realloc manually to reduce copies
typename SparseMatrixType::Storage newdata(m_matrix.data().allocatedSize() - block_size + nnz);
std::memcpy(newdata.valuePtr(), m_matrix.data().valuePtr(), start*sizeof(Scalar));
std::memcpy(newdata.indexPtr(), m_matrix.data().indexPtr(), start*sizeof(Index));
std::memcpy(newdata.valuePtr() + start, tmp.data().valuePtr(), nnz*sizeof(Scalar));
std::memcpy(newdata.indexPtr() + start, tmp.data().indexPtr(), nnz*sizeof(Index));
std::memcpy(newdata.valuePtr()+start+nnz, matrix.data().valuePtr()+end, tail_size*sizeof(Scalar));
std::memcpy(newdata.indexPtr()+start+nnz, matrix.data().indexPtr()+end, tail_size*sizeof(Index));
newdata.resize(m_matrix.outerIndexPtr()[m_matrix.outerSize()] - block_size + nnz);
matrix.data().swap(newdata);
}
else
{
// no need to realloc, simply copy the tail at its respective position and insert tmp
matrix.data().resize(start + nnz + tail_size);
std::memmove(matrix.data().valuePtr()+start+nnz, matrix.data().valuePtr()+end, tail_size*sizeof(Scalar));
std::memmove(matrix.data().indexPtr()+start+nnz, matrix.data().indexPtr()+end, tail_size*sizeof(Index));
std::memcpy(matrix.data().valuePtr()+start, tmp.data().valuePtr(), nnz*sizeof(Scalar));
std::memcpy(matrix.data().indexPtr()+start, tmp.data().indexPtr(), nnz*sizeof(Index));
}
// update innerNonZeros
if(!m_matrix.isCompressed())
for(Index j=0; j<m_outerSize.value(); ++j)
matrix.innerNonZeroPtr()[m_outerStart+j] = tmp.innerVector(j).nonZeros();
// update outer index pointers
Index p = start;
for(Index k=0; k<m_outerSize.value(); ++k)
{
matrix.outerIndexPtr()[m_outerStart+k] = p;
p += tmp.innerVector(k).nonZeros();
}
std::ptrdiff_t offset = nnz - block_size;
for(Index k = m_outerStart + m_outerSize.value(); k<=matrix.outerSize(); ++k)
{
matrix.outerIndexPtr()[k] += offset;
}
return derived();
}
inline BlockType& operator=(const BlockType& other)
{
return operator=<BlockType>(other);
}
inline const Scalar* valuePtr() const
{ return m_matrix.valuePtr() + m_matrix.outerIndexPtr()[m_outerStart]; }
inline Scalar* valuePtr()
{ return m_matrix.const_cast_derived().valuePtr() + m_matrix.outerIndexPtr()[m_outerStart]; }
inline const Index* innerIndexPtr() const
{ return m_matrix.innerIndexPtr() + m_matrix.outerIndexPtr()[m_outerStart]; }
inline Index* innerIndexPtr()
{ return m_matrix.const_cast_derived().innerIndexPtr() + m_matrix.outerIndexPtr()[m_outerStart]; }
inline const Index* outerIndexPtr() const
{ return m_matrix.outerIndexPtr() + m_outerStart; }
inline Index* outerIndexPtr()
{ return m_matrix.const_cast_derived().outerIndexPtr() + m_outerStart; }
Index nonZeros() const
{
if(m_matrix.isCompressed())
return std::size_t(m_matrix.outerIndexPtr()[m_outerStart+m_outerSize.value()])
- std::size_t(m_matrix.outerIndexPtr()[m_outerStart]);
else if(m_outerSize.value()==0)
return 0;
else
return Map<const Matrix<Index,OuterSize,1> >(m_matrix.innerNonZeroPtr()+m_outerStart, m_outerSize.value()).sum();
}
inline Scalar& coeffRef(int row, int col)
{
return m_matrix.const_cast_derived().coeffRef(row + (IsRowMajor ? m_outerStart : 0), col + (IsRowMajor ? 0 : m_outerStart));
}
inline const Scalar coeff(int row, int col) const
{
return m_matrix.coeff(row + (IsRowMajor ? m_outerStart : 0), col + (IsRowMajor ? 0 : m_outerStart));
}
inline const Scalar coeff(int index) const
{
return m_matrix.coeff(IsRowMajor ? m_outerStart : index, IsRowMajor ? index : m_outerStart);
}
const Scalar& lastCoeff() const
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(BlockImpl);
eigen_assert(nonZeros()>0);
if(m_matrix.isCompressed())
return m_matrix.valuePtr()[m_matrix.outerIndexPtr()[m_outerStart+1]-1];
else
return m_matrix.valuePtr()[m_matrix.outerIndexPtr()[m_outerStart]+m_matrix.innerNonZeroPtr()[m_outerStart]-1];
}
EIGEN_STRONG_INLINE Index rows() const { return IsRowMajor ? m_outerSize.value() : m_matrix.rows(); }
EIGEN_STRONG_INLINE Index cols() const { return IsRowMajor ? m_matrix.cols() : m_outerSize.value(); }
protected:
typename SparseMatrixType::Nested m_matrix;
Index m_outerStart;
const internal::variable_if_dynamic<Index, OuterSize> m_outerSize;
};
template<typename _Scalar, int _Options, typename _Index, int BlockRows, int BlockCols>
class BlockImpl<const SparseMatrix<_Scalar, _Options, _Index>,BlockRows,BlockCols,true,Sparse>
: public SparseMatrixBase<Block<const SparseMatrix<_Scalar, _Options, _Index>,BlockRows,BlockCols,true> >
{
typedef SparseMatrix<_Scalar, _Options, _Index> SparseMatrixType;
typedef typename internal::remove_all<typename SparseMatrixType::Nested>::type _MatrixTypeNested;
public:
typedef Block<const SparseMatrixType, BlockRows, BlockCols, true> BlockType;
enum { IsRowMajor = internal::traits<BlockType>::IsRowMajor };
EIGEN_SPARSE_PUBLIC_INTERFACE(BlockType)
protected:
enum { OuterSize = IsRowMajor ? BlockRows : BlockCols };
public:
class InnerIterator: public SparseMatrixType::InnerIterator
{
public:
inline InnerIterator(const BlockType& xpr, Index outer)
: SparseMatrixType::InnerIterator(xpr.m_matrix, xpr.m_outerStart + outer), m_outer(outer)
{}
inline Index row() const { return IsRowMajor ? m_outer : this->index(); }
inline Index col() const { return IsRowMajor ? this->index() : m_outer; }
protected:
Index m_outer;
};
class ReverseInnerIterator: public SparseMatrixType::ReverseInnerIterator
{
public:
inline ReverseInnerIterator(const BlockType& xpr, Index outer)
: SparseMatrixType::ReverseInnerIterator(xpr.m_matrix, xpr.m_outerStart + outer), m_outer(outer)
{}
inline Index row() const { return IsRowMajor ? m_outer : this->index(); }
inline Index col() const { return IsRowMajor ? this->index() : m_outer; }
protected:
Index m_outer;
};
inline BlockImpl(const SparseMatrixType& xpr, int i)
: m_matrix(xpr), m_outerStart(i), m_outerSize(OuterSize)
{}
inline BlockImpl(const SparseMatrixType& xpr, int startRow, int startCol, int blockRows, int blockCols)
: m_matrix(xpr), m_outerStart(IsRowMajor ? startRow : startCol), m_outerSize(IsRowMajor ? blockRows : blockCols)
{}
inline const Scalar* valuePtr() const
{ return m_matrix.valuePtr() + m_matrix.outerIndexPtr()[m_outerStart]; }
inline const Index* innerIndexPtr() const
{ return m_matrix.innerIndexPtr() + m_matrix.outerIndexPtr()[m_outerStart]; }
inline const Index* outerIndexPtr() const
{ return m_matrix.outerIndexPtr() + m_outerStart; }
Index nonZeros() const
{
if(m_matrix.isCompressed())
return std::size_t(m_matrix.outerIndexPtr()[m_outerStart+m_outerSize.value()])
- std::size_t(m_matrix.outerIndexPtr()[m_outerStart]);
else if(m_outerSize.value()==0)
return 0;
else
return Map<const Matrix<Index,OuterSize,1> >(m_matrix.innerNonZeroPtr()+m_outerStart, m_outerSize.value()).sum();
}
inline const Scalar coeff(int row, int col) const
{
return m_matrix.coeff(row + (IsRowMajor ? m_outerStart : 0), col + (IsRowMajor ? 0 : m_outerStart));
}
inline const Scalar coeff(int index) const
{
return m_matrix.coeff(IsRowMajor ? m_outerStart : index, IsRowMajor ? index : m_outerStart);
}
const Scalar& lastCoeff() const
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(BlockImpl);
eigen_assert(nonZeros()>0);
if(m_matrix.isCompressed())
return m_matrix.valuePtr()[m_matrix.outerIndexPtr()[m_outerStart+1]-1];
else
return m_matrix.valuePtr()[m_matrix.outerIndexPtr()[m_outerStart]+m_matrix.innerNonZeroPtr()[m_outerStart]-1];
}
EIGEN_STRONG_INLINE Index rows() const { return IsRowMajor ? m_outerSize.value() : m_matrix.rows(); }
EIGEN_STRONG_INLINE Index cols() const { return IsRowMajor ? m_matrix.cols() : m_outerSize.value(); }
protected:
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(BlockImpl)
typename SparseMatrixType::Nested m_matrix;
Index m_outerStart;
const internal::variable_if_dynamic<Index, OuterSize> m_outerSize;
};
//----------
/** \returns the \a outer -th column (resp. row) of the matrix \c *this if \c *this
* is col-major (resp. row-major).
*/
template<typename Derived>
typename SparseMatrixBase<Derived>::InnerVectorReturnType SparseMatrixBase<Derived>::innerVector(Index outer)
{ return InnerVectorReturnType(derived(), outer); }
/** \returns the \a outer -th column (resp. row) of the matrix \c *this if \c *this
* is col-major (resp. row-major). Read-only.
*/
template<typename Derived>
const typename SparseMatrixBase<Derived>::ConstInnerVectorReturnType SparseMatrixBase<Derived>::innerVector(Index outer) const
{ return ConstInnerVectorReturnType(derived(), outer); }
/** \returns the \a outer -th column (resp. row) of the matrix \c *this if \c *this
* is col-major (resp. row-major).
*/
template<typename Derived>
typename SparseMatrixBase<Derived>::InnerVectorsReturnType
SparseMatrixBase<Derived>::innerVectors(Index outerStart, Index outerSize)
{
return Block<Derived,Dynamic,Dynamic,true>(derived(),
IsRowMajor ? outerStart : 0, IsRowMajor ? 0 : outerStart,
IsRowMajor ? outerSize : rows(), IsRowMajor ? cols() : outerSize);
}
/** \returns the \a outer -th column (resp. row) of the matrix \c *this if \c *this
* is col-major (resp. row-major). Read-only.
*/
template<typename Derived>
const typename SparseMatrixBase<Derived>::ConstInnerVectorsReturnType
SparseMatrixBase<Derived>::innerVectors(Index outerStart, Index outerSize) const
{
return Block<const Derived,Dynamic,Dynamic,true>(derived(),
IsRowMajor ? outerStart : 0, IsRowMajor ? 0 : outerStart,
IsRowMajor ? outerSize : rows(), IsRowMajor ? cols() : outerSize);
}
namespace internal {
template< typename XprType, int BlockRows, int BlockCols, bool InnerPanel,
bool OuterVector = (BlockCols==1 && XprType::IsRowMajor) || (BlockRows==1 && !XprType::IsRowMajor)>
class GenericSparseBlockInnerIteratorImpl;
}
/** Generic implementation of sparse Block expression.
* Real-only.
*/
template<typename XprType, int BlockRows, int BlockCols, bool InnerPanel>
class BlockImpl<XprType,BlockRows,BlockCols,InnerPanel,Sparse>
: public SparseMatrixBase<Block<XprType,BlockRows,BlockCols,InnerPanel> >, internal::no_assignment_operator
{
typedef typename internal::remove_all<typename XprType::Nested>::type _MatrixTypeNested;
public:
typedef Block<XprType, BlockRows, BlockCols, InnerPanel> BlockType;
enum { IsRowMajor = internal::traits<BlockType>::IsRowMajor };
EIGEN_SPARSE_PUBLIC_INTERFACE(BlockType)
/** Column or Row constructor
*/
inline BlockImpl(const XprType& xpr, int i)
: m_matrix(xpr),
m_startRow( (BlockRows==1) && (BlockCols==XprType::ColsAtCompileTime) ? i : 0),
m_startCol( (BlockRows==XprType::RowsAtCompileTime) && (BlockCols==1) ? i : 0),
m_blockRows(BlockRows==1 ? 1 : xpr.rows()),
m_blockCols(BlockCols==1 ? 1 : xpr.cols())
{}
/** Dynamic-size constructor
*/
inline BlockImpl(const XprType& xpr, int startRow, int startCol, int blockRows, int blockCols)
: m_matrix(xpr), m_startRow(startRow), m_startCol(startCol), m_blockRows(blockRows), m_blockCols(blockCols)
{}
inline int rows() const { return m_blockRows.value(); }
inline int cols() const { return m_blockCols.value(); }
inline Scalar& coeffRef(int row, int col)
{
return m_matrix.const_cast_derived()
.coeffRef(row + m_startRow.value(), col + m_startCol.value());
}
inline const Scalar coeff(int row, int col) const
{
return m_matrix.coeff(row + m_startRow.value(), col + m_startCol.value());
}
inline Scalar& coeffRef(int index)
{
return m_matrix.const_cast_derived()
.coeffRef(m_startRow.value() + (RowsAtCompileTime == 1 ? 0 : index),
m_startCol.value() + (RowsAtCompileTime == 1 ? index : 0));
}
inline const Scalar coeff(int index) const
{
return m_matrix
.coeff(m_startRow.value() + (RowsAtCompileTime == 1 ? 0 : index),
m_startCol.value() + (RowsAtCompileTime == 1 ? index : 0));
}
inline const _MatrixTypeNested& nestedExpression() const { return m_matrix; }
typedef internal::GenericSparseBlockInnerIteratorImpl<XprType,BlockRows,BlockCols,InnerPanel> InnerIterator;
class ReverseInnerIterator : public _MatrixTypeNested::ReverseInnerIterator
{
typedef typename _MatrixTypeNested::ReverseInnerIterator Base;
const BlockType& m_block;
Index m_begin;
public:
EIGEN_STRONG_INLINE ReverseInnerIterator(const BlockType& block, Index outer)
: Base(block.derived().nestedExpression(), outer + (IsRowMajor ? block.m_startRow.value() : block.m_startCol.value())),
m_block(block),
m_begin(IsRowMajor ? block.m_startCol.value() : block.m_startRow.value())
{
while( (Base::operator bool()) && (Base::index() >= (IsRowMajor ? m_block.m_startCol.value()+block.m_blockCols.value() : m_block.m_startRow.value()+block.m_blockRows.value())) )
Base::operator--();
}
inline Index index() const { return Base::index() - (IsRowMajor ? m_block.m_startCol.value() : m_block.m_startRow.value()); }
inline Index outer() const { return Base::outer() - (IsRowMajor ? m_block.m_startRow.value() : m_block.m_startCol.value()); }
inline Index row() const { return Base::row() - m_block.m_startRow.value(); }
inline Index col() const { return Base::col() - m_block.m_startCol.value(); }
inline operator bool() const { return Base::operator bool() && Base::index() >= m_begin; }
};
protected:
friend class internal::GenericSparseBlockInnerIteratorImpl<XprType,BlockRows,BlockCols,InnerPanel>;
friend class ReverseInnerIterator;
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(BlockImpl)
typename XprType::Nested m_matrix;
const internal::variable_if_dynamic<Index, XprType::RowsAtCompileTime == 1 ? 0 : Dynamic> m_startRow;
const internal::variable_if_dynamic<Index, XprType::ColsAtCompileTime == 1 ? 0 : Dynamic> m_startCol;
const internal::variable_if_dynamic<Index, RowsAtCompileTime> m_blockRows;
const internal::variable_if_dynamic<Index, ColsAtCompileTime> m_blockCols;
private:
Index nonZeros() const;
};
namespace internal {
template<typename XprType, int BlockRows, int BlockCols, bool InnerPanel>
class GenericSparseBlockInnerIteratorImpl<XprType,BlockRows,BlockCols,InnerPanel,false> : public internal::remove_all<typename XprType::Nested>::type::InnerIterator
{
public:
typedef Block<XprType, BlockRows, BlockCols, InnerPanel> BlockType;
enum {
IsRowMajor = BlockType::IsRowMajor
};
typedef typename BlockType::Index Index;
protected:
typedef typename internal::remove_all<typename XprType::Nested>::type _MatrixTypeNested;
typedef typename _MatrixTypeNested::InnerIterator Base;
const BlockType& m_block;
Index m_end;
public:
EIGEN_STRONG_INLINE GenericSparseBlockInnerIteratorImpl(const BlockType& block, Index outer)
: Base(block.derived().nestedExpression(), outer + (IsRowMajor ? block.m_startRow.value() : block.m_startCol.value())),
m_block(block),
m_end(IsRowMajor ? block.m_startCol.value()+block.m_blockCols.value() : block.m_startRow.value()+block.m_blockRows.value())
{
while( (Base::operator bool()) && (Base::index() < (IsRowMajor ? m_block.m_startCol.value() : m_block.m_startRow.value())) )
Base::operator++();
}
inline Index index() const { return Base::index() - (IsRowMajor ? m_block.m_startCol.value() : m_block.m_startRow.value()); }
inline Index outer() const { return Base::outer() - (IsRowMajor ? m_block.m_startRow.value() : m_block.m_startCol.value()); }
inline Index row() const { return Base::row() - m_block.m_startRow.value(); }
inline Index col() const { return Base::col() - m_block.m_startCol.value(); }
inline operator bool() const { return Base::operator bool() && Base::index() < m_end; }
};
// Row vector of a column-major sparse matrix or column of a row-major one.
template<typename XprType, int BlockRows, int BlockCols, bool InnerPanel>
class GenericSparseBlockInnerIteratorImpl<XprType,BlockRows,BlockCols,InnerPanel,true>
{
public:
typedef Block<XprType, BlockRows, BlockCols, InnerPanel> BlockType;
enum {
IsRowMajor = BlockType::IsRowMajor
};
typedef typename BlockType::Index Index;
typedef typename BlockType::Scalar Scalar;
protected:
typedef typename internal::remove_all<typename XprType::Nested>::type _MatrixTypeNested;
const BlockType& m_block;
Index m_outerPos;
Index m_innerIndex;
Scalar m_value;
Index m_end;
public:
EIGEN_STRONG_INLINE GenericSparseBlockInnerIteratorImpl(const BlockType& block, Index outer = 0)
:
m_block(block),
m_outerPos( (IsRowMajor ? block.m_startCol.value() : block.m_startRow.value()) - 1), // -1 so that operator++ finds the first non-zero entry
m_innerIndex(IsRowMajor ? block.m_startRow.value() : block.m_startCol.value()),
m_end(IsRowMajor ? block.m_startCol.value()+block.m_blockCols.value() : block.m_startRow.value()+block.m_blockRows.value())
{
EIGEN_UNUSED_VARIABLE(outer);
eigen_assert(outer==0);
++(*this);
}
inline Index index() const { return m_outerPos - (IsRowMajor ? m_block.m_startCol.value() : m_block.m_startRow.value()); }
inline Index outer() const { return 0; }
inline Index row() const { return IsRowMajor ? 0 : index(); }
inline Index col() const { return IsRowMajor ? index() : 0; }
inline Scalar value() const { return m_value; }
inline GenericSparseBlockInnerIteratorImpl& operator++()
{
// search next non-zero entry
while(m_outerPos<m_end)
{
m_outerPos++;
typename XprType::InnerIterator it(m_block.m_matrix, m_outerPos);
// search for the key m_innerIndex in the current outer-vector
while(it && it.index() < m_innerIndex) ++it;
if(it && it.index()==m_innerIndex)
{
m_value = it.value();
break;
}
}
return *this;
}
inline operator bool() const { return m_outerPos < m_end; }
};
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_SPARSE_BLOCK_H