MYNT-EYE-S-SDK/3rdparty/eigen3/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h
2019-01-03 16:25:18 +08:00

371 lines
15 KiB
C++

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_GENERALIZEDEIGENSOLVER_H
#define EIGEN_GENERALIZEDEIGENSOLVER_H
#include "./RealQZ.h"
namespace Eigen {
/** \eigenvalues_module \ingroup Eigenvalues_Module
*
*
* \class GeneralizedEigenSolver
*
* \brief Computes the generalized eigenvalues and eigenvectors of a pair of general matrices
*
* \tparam _MatrixType the type of the matrices of which we are computing the
* eigen-decomposition; this is expected to be an instantiation of the Matrix
* class template. Currently, only real matrices are supported.
*
* The generalized eigenvalues and eigenvectors of a matrix pair \f$ A \f$ and \f$ B \f$ are scalars
* \f$ \lambda \f$ and vectors \f$ v \f$ such that \f$ Av = \lambda Bv \f$. If
* \f$ D \f$ is a diagonal matrix with the eigenvalues on the diagonal, and
* \f$ V \f$ is a matrix with the eigenvectors as its columns, then \f$ A V =
* B V D \f$. The matrix \f$ V \f$ is almost always invertible, in which case we
* have \f$ A = B V D V^{-1} \f$. This is called the generalized eigen-decomposition.
*
* The generalized eigenvalues and eigenvectors of a matrix pair may be complex, even when the
* matrices are real. Moreover, the generalized eigenvalue might be infinite if the matrix B is
* singular. To workaround this difficulty, the eigenvalues are provided as a pair of complex \f$ \alpha \f$
* and real \f$ \beta \f$ such that: \f$ \lambda_i = \alpha_i / \beta_i \f$. If \f$ \beta_i \f$ is (nearly) zero,
* then one can consider the well defined left eigenvalue \f$ \mu = \beta_i / \alpha_i\f$ such that:
* \f$ \mu_i A v_i = B v_i \f$, or even \f$ \mu_i u_i^T A = u_i^T B \f$ where \f$ u_i \f$ is
* called the left eigenvector.
*
* Call the function compute() to compute the generalized eigenvalues and eigenvectors of
* a given matrix pair. Alternatively, you can use the
* GeneralizedEigenSolver(const MatrixType&, const MatrixType&, bool) constructor which computes the
* eigenvalues and eigenvectors at construction time. Once the eigenvalue and
* eigenvectors are computed, they can be retrieved with the eigenvalues() and
* eigenvectors() functions.
*
* Here is an usage example of this class:
* Example: \include GeneralizedEigenSolver.cpp
* Output: \verbinclude GeneralizedEigenSolver.out
*
* \sa MatrixBase::eigenvalues(), class ComplexEigenSolver, class SelfAdjointEigenSolver
*/
template<typename _MatrixType> class GeneralizedEigenSolver
{
public:
/** \brief Synonym for the template parameter \p _MatrixType. */
typedef _MatrixType MatrixType;
enum {
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
Options = MatrixType::Options,
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
};
/** \brief Scalar type for matrices of type #MatrixType. */
typedef typename MatrixType::Scalar Scalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
typedef typename MatrixType::Index Index;
/** \brief Complex scalar type for #MatrixType.
*
* This is \c std::complex<Scalar> if #Scalar is real (e.g.,
* \c float or \c double) and just \c Scalar if #Scalar is
* complex.
*/
typedef std::complex<RealScalar> ComplexScalar;
/** \brief Type for vector of real scalar values eigenvalues as returned by betas().
*
* This is a column vector with entries of type #Scalar.
* The length of the vector is the size of #MatrixType.
*/
typedef Matrix<Scalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> VectorType;
/** \brief Type for vector of complex scalar values eigenvalues as returned by betas().
*
* This is a column vector with entries of type #ComplexScalar.
* The length of the vector is the size of #MatrixType.
*/
typedef Matrix<ComplexScalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> ComplexVectorType;
/** \brief Expression type for the eigenvalues as returned by eigenvalues().
*/
typedef CwiseBinaryOp<internal::scalar_quotient_op<ComplexScalar,Scalar>,ComplexVectorType,VectorType> EigenvalueType;
/** \brief Type for matrix of eigenvectors as returned by eigenvectors().
*
* This is a square matrix with entries of type #ComplexScalar.
* The size is the same as the size of #MatrixType.
*/
typedef Matrix<ComplexScalar, RowsAtCompileTime, ColsAtCompileTime, Options, MaxRowsAtCompileTime, MaxColsAtCompileTime> EigenvectorsType;
/** \brief Default constructor.
*
* The default constructor is useful in cases in which the user intends to
* perform decompositions via EigenSolver::compute(const MatrixType&, bool).
*
* \sa compute() for an example.
*/
GeneralizedEigenSolver() : m_eivec(), m_alphas(), m_betas(), m_isInitialized(false), m_realQZ(), m_matS(), m_tmp() {}
/** \brief Default constructor with memory preallocation
*
* Like the default constructor but with preallocation of the internal data
* according to the specified problem \a size.
* \sa GeneralizedEigenSolver()
*/
GeneralizedEigenSolver(Index size)
: m_eivec(size, size),
m_alphas(size),
m_betas(size),
m_isInitialized(false),
m_eigenvectorsOk(false),
m_realQZ(size),
m_matS(size, size),
m_tmp(size)
{}
/** \brief Constructor; computes the generalized eigendecomposition of given matrix pair.
*
* \param[in] A Square matrix whose eigendecomposition is to be computed.
* \param[in] B Square matrix whose eigendecomposition is to be computed.
* \param[in] computeEigenvectors If true, both the eigenvectors and the
* eigenvalues are computed; if false, only the eigenvalues are computed.
*
* This constructor calls compute() to compute the generalized eigenvalues
* and eigenvectors.
*
* \sa compute()
*/
GeneralizedEigenSolver(const MatrixType& A, const MatrixType& B, bool computeEigenvectors = true)
: m_eivec(A.rows(), A.cols()),
m_alphas(A.cols()),
m_betas(A.cols()),
m_isInitialized(false),
m_eigenvectorsOk(false),
m_realQZ(A.cols()),
m_matS(A.rows(), A.cols()),
m_tmp(A.cols())
{
compute(A, B, computeEigenvectors);
}
/* \brief Returns the computed generalized eigenvectors.
*
* \returns %Matrix whose columns are the (possibly complex) eigenvectors.
*
* \pre Either the constructor
* GeneralizedEigenSolver(const MatrixType&,const MatrixType&, bool) or the member function
* compute(const MatrixType&, const MatrixType& bool) has been called before, and
* \p computeEigenvectors was set to true (the default).
*
* Column \f$ k \f$ of the returned matrix is an eigenvector corresponding
* to eigenvalue number \f$ k \f$ as returned by eigenvalues(). The
* eigenvectors are normalized to have (Euclidean) norm equal to one. The
* matrix returned by this function is the matrix \f$ V \f$ in the
* generalized eigendecomposition \f$ A = B V D V^{-1} \f$, if it exists.
*
* \sa eigenvalues()
*/
// EigenvectorsType eigenvectors() const;
/** \brief Returns an expression of the computed generalized eigenvalues.
*
* \returns An expression of the column vector containing the eigenvalues.
*
* It is a shortcut for \code this->alphas().cwiseQuotient(this->betas()); \endcode
* Not that betas might contain zeros. It is therefore not recommended to use this function,
* but rather directly deal with the alphas and betas vectors.
*
* \pre Either the constructor
* GeneralizedEigenSolver(const MatrixType&,const MatrixType&,bool) or the member function
* compute(const MatrixType&,const MatrixType&,bool) has been called before.
*
* The eigenvalues are repeated according to their algebraic multiplicity,
* so there are as many eigenvalues as rows in the matrix. The eigenvalues
* are not sorted in any particular order.
*
* \sa alphas(), betas(), eigenvectors()
*/
EigenvalueType eigenvalues() const
{
eigen_assert(m_isInitialized && "GeneralizedEigenSolver is not initialized.");
return EigenvalueType(m_alphas,m_betas);
}
/** \returns A const reference to the vectors containing the alpha values
*
* This vector permits to reconstruct the j-th eigenvalues as alphas(i)/betas(j).
*
* \sa betas(), eigenvalues() */
ComplexVectorType alphas() const
{
eigen_assert(m_isInitialized && "GeneralizedEigenSolver is not initialized.");
return m_alphas;
}
/** \returns A const reference to the vectors containing the beta values
*
* This vector permits to reconstruct the j-th eigenvalues as alphas(i)/betas(j).
*
* \sa alphas(), eigenvalues() */
VectorType betas() const
{
eigen_assert(m_isInitialized && "GeneralizedEigenSolver is not initialized.");
return m_betas;
}
/** \brief Computes generalized eigendecomposition of given matrix.
*
* \param[in] A Square matrix whose eigendecomposition is to be computed.
* \param[in] B Square matrix whose eigendecomposition is to be computed.
* \param[in] computeEigenvectors If true, both the eigenvectors and the
* eigenvalues are computed; if false, only the eigenvalues are
* computed.
* \returns Reference to \c *this
*
* This function computes the eigenvalues of the real matrix \p matrix.
* The eigenvalues() function can be used to retrieve them. If
* \p computeEigenvectors is true, then the eigenvectors are also computed
* and can be retrieved by calling eigenvectors().
*
* The matrix is first reduced to real generalized Schur form using the RealQZ
* class. The generalized Schur decomposition is then used to compute the eigenvalues
* and eigenvectors.
*
* The cost of the computation is dominated by the cost of the
* generalized Schur decomposition.
*
* This method reuses of the allocated data in the GeneralizedEigenSolver object.
*/
GeneralizedEigenSolver& compute(const MatrixType& A, const MatrixType& B, bool computeEigenvectors = true);
ComputationInfo info() const
{
eigen_assert(m_isInitialized && "EigenSolver is not initialized.");
return m_realQZ.info();
}
/** Sets the maximal number of iterations allowed.
*/
GeneralizedEigenSolver& setMaxIterations(Index maxIters)
{
m_realQZ.setMaxIterations(maxIters);
return *this;
}
protected:
static void check_template_parameters()
{
EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
EIGEN_STATIC_ASSERT(!NumTraits<Scalar>::IsComplex, NUMERIC_TYPE_MUST_BE_REAL);
}
MatrixType m_eivec;
ComplexVectorType m_alphas;
VectorType m_betas;
bool m_isInitialized;
bool m_eigenvectorsOk;
RealQZ<MatrixType> m_realQZ;
MatrixType m_matS;
typedef Matrix<Scalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> ColumnVectorType;
ColumnVectorType m_tmp;
};
//template<typename MatrixType>
//typename GeneralizedEigenSolver<MatrixType>::EigenvectorsType GeneralizedEigenSolver<MatrixType>::eigenvectors() const
//{
// eigen_assert(m_isInitialized && "EigenSolver is not initialized.");
// eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
// Index n = m_eivec.cols();
// EigenvectorsType matV(n,n);
// // TODO
// return matV;
//}
template<typename MatrixType>
GeneralizedEigenSolver<MatrixType>&
GeneralizedEigenSolver<MatrixType>::compute(const MatrixType& A, const MatrixType& B, bool computeEigenvectors)
{
check_template_parameters();
using std::sqrt;
using std::abs;
eigen_assert(A.cols() == A.rows() && B.cols() == A.rows() && B.cols() == B.rows());
// Reduce to generalized real Schur form:
// A = Q S Z and B = Q T Z
m_realQZ.compute(A, B, computeEigenvectors);
if (m_realQZ.info() == Success)
{
m_matS = m_realQZ.matrixS();
if (computeEigenvectors)
m_eivec = m_realQZ.matrixZ().transpose();
// Compute eigenvalues from matS
m_alphas.resize(A.cols());
m_betas.resize(A.cols());
Index i = 0;
while (i < A.cols())
{
if (i == A.cols() - 1 || m_matS.coeff(i+1, i) == Scalar(0))
{
m_alphas.coeffRef(i) = m_matS.coeff(i, i);
m_betas.coeffRef(i) = m_realQZ.matrixT().coeff(i,i);
++i;
}
else
{
// We need to extract the generalized eigenvalues of the pair of a general 2x2 block S and a triangular 2x2 block T
// From the eigen decomposition of T = U * E * U^-1,
// we can extract the eigenvalues of (U^-1 * S * U) / E
// Here, we can take advantage that E = diag(T), and U = [ 1 T_01 ; 0 T_11-T_00], and U^-1 = [1 -T_11/(T_11-T_00) ; 0 1/(T_11-T_00)].
// Then taking beta=T_00*T_11*(T_11-T_00), we can avoid any division, and alpha is the eigenvalues of A = (U^-1 * S * U) * diag(T_11,T_00) * (T_11-T_00):
// T = [a b ; 0 c]
// S = [e f ; g h]
RealScalar a = m_realQZ.matrixT().coeff(i, i), b = m_realQZ.matrixT().coeff(i, i+1), c = m_realQZ.matrixT().coeff(i+1, i+1);
RealScalar e = m_matS.coeff(i, i), f = m_matS.coeff(i, i+1), g = m_matS.coeff(i+1, i), h = m_matS.coeff(i+1, i+1);
RealScalar d = c-a;
RealScalar gb = g*b;
Matrix<RealScalar,2,2> A;
A << (e*d-gb)*c, ((e*b+f*d-h*b)*d-gb*b)*a,
g*c , (gb+h*d)*a;
// NOTE, we could also compute the SVD of T's block during the QZ factorization so that the respective T block is guaranteed to be diagonal,
// and then we could directly apply the formula below (while taking care of scaling S columns by T11,T00):
Scalar p = Scalar(0.5) * (A.coeff(i, i) - A.coeff(i+1, i+1));
Scalar z = sqrt(abs(p * p + A.coeff(i+1, i) * A.coeff(i, i+1)));
m_alphas.coeffRef(i) = ComplexScalar(A.coeff(i+1, i+1) + p, z);
m_alphas.coeffRef(i+1) = ComplexScalar(A.coeff(i+1, i+1) + p, -z);
m_betas.coeffRef(i) =
m_betas.coeffRef(i+1) = a*c*d;
i += 2;
}
}
}
m_isInitialized = true;
m_eigenvectorsOk = false;//computeEigenvectors;
return *this;
}
} // end namespace Eigen
#endif // EIGEN_GENERALIZEDEIGENSOLVER_H