371 lines
15 KiB
C++
371 lines
15 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2012 Gael Guennebaud <gael.guennebaud@inria.fr>
|
|
// Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#ifndef EIGEN_GENERALIZEDEIGENSOLVER_H
|
|
#define EIGEN_GENERALIZEDEIGENSOLVER_H
|
|
|
|
#include "./RealQZ.h"
|
|
|
|
namespace Eigen {
|
|
|
|
/** \eigenvalues_module \ingroup Eigenvalues_Module
|
|
*
|
|
*
|
|
* \class GeneralizedEigenSolver
|
|
*
|
|
* \brief Computes the generalized eigenvalues and eigenvectors of a pair of general matrices
|
|
*
|
|
* \tparam _MatrixType the type of the matrices of which we are computing the
|
|
* eigen-decomposition; this is expected to be an instantiation of the Matrix
|
|
* class template. Currently, only real matrices are supported.
|
|
*
|
|
* The generalized eigenvalues and eigenvectors of a matrix pair \f$ A \f$ and \f$ B \f$ are scalars
|
|
* \f$ \lambda \f$ and vectors \f$ v \f$ such that \f$ Av = \lambda Bv \f$. If
|
|
* \f$ D \f$ is a diagonal matrix with the eigenvalues on the diagonal, and
|
|
* \f$ V \f$ is a matrix with the eigenvectors as its columns, then \f$ A V =
|
|
* B V D \f$. The matrix \f$ V \f$ is almost always invertible, in which case we
|
|
* have \f$ A = B V D V^{-1} \f$. This is called the generalized eigen-decomposition.
|
|
*
|
|
* The generalized eigenvalues and eigenvectors of a matrix pair may be complex, even when the
|
|
* matrices are real. Moreover, the generalized eigenvalue might be infinite if the matrix B is
|
|
* singular. To workaround this difficulty, the eigenvalues are provided as a pair of complex \f$ \alpha \f$
|
|
* and real \f$ \beta \f$ such that: \f$ \lambda_i = \alpha_i / \beta_i \f$. If \f$ \beta_i \f$ is (nearly) zero,
|
|
* then one can consider the well defined left eigenvalue \f$ \mu = \beta_i / \alpha_i\f$ such that:
|
|
* \f$ \mu_i A v_i = B v_i \f$, or even \f$ \mu_i u_i^T A = u_i^T B \f$ where \f$ u_i \f$ is
|
|
* called the left eigenvector.
|
|
*
|
|
* Call the function compute() to compute the generalized eigenvalues and eigenvectors of
|
|
* a given matrix pair. Alternatively, you can use the
|
|
* GeneralizedEigenSolver(const MatrixType&, const MatrixType&, bool) constructor which computes the
|
|
* eigenvalues and eigenvectors at construction time. Once the eigenvalue and
|
|
* eigenvectors are computed, they can be retrieved with the eigenvalues() and
|
|
* eigenvectors() functions.
|
|
*
|
|
* Here is an usage example of this class:
|
|
* Example: \include GeneralizedEigenSolver.cpp
|
|
* Output: \verbinclude GeneralizedEigenSolver.out
|
|
*
|
|
* \sa MatrixBase::eigenvalues(), class ComplexEigenSolver, class SelfAdjointEigenSolver
|
|
*/
|
|
template<typename _MatrixType> class GeneralizedEigenSolver
|
|
{
|
|
public:
|
|
|
|
/** \brief Synonym for the template parameter \p _MatrixType. */
|
|
typedef _MatrixType MatrixType;
|
|
|
|
enum {
|
|
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
|
|
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
|
|
Options = MatrixType::Options,
|
|
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
|
|
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
|
|
};
|
|
|
|
/** \brief Scalar type for matrices of type #MatrixType. */
|
|
typedef typename MatrixType::Scalar Scalar;
|
|
typedef typename NumTraits<Scalar>::Real RealScalar;
|
|
typedef typename MatrixType::Index Index;
|
|
|
|
/** \brief Complex scalar type for #MatrixType.
|
|
*
|
|
* This is \c std::complex<Scalar> if #Scalar is real (e.g.,
|
|
* \c float or \c double) and just \c Scalar if #Scalar is
|
|
* complex.
|
|
*/
|
|
typedef std::complex<RealScalar> ComplexScalar;
|
|
|
|
/** \brief Type for vector of real scalar values eigenvalues as returned by betas().
|
|
*
|
|
* This is a column vector with entries of type #Scalar.
|
|
* The length of the vector is the size of #MatrixType.
|
|
*/
|
|
typedef Matrix<Scalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> VectorType;
|
|
|
|
/** \brief Type for vector of complex scalar values eigenvalues as returned by betas().
|
|
*
|
|
* This is a column vector with entries of type #ComplexScalar.
|
|
* The length of the vector is the size of #MatrixType.
|
|
*/
|
|
typedef Matrix<ComplexScalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> ComplexVectorType;
|
|
|
|
/** \brief Expression type for the eigenvalues as returned by eigenvalues().
|
|
*/
|
|
typedef CwiseBinaryOp<internal::scalar_quotient_op<ComplexScalar,Scalar>,ComplexVectorType,VectorType> EigenvalueType;
|
|
|
|
/** \brief Type for matrix of eigenvectors as returned by eigenvectors().
|
|
*
|
|
* This is a square matrix with entries of type #ComplexScalar.
|
|
* The size is the same as the size of #MatrixType.
|
|
*/
|
|
typedef Matrix<ComplexScalar, RowsAtCompileTime, ColsAtCompileTime, Options, MaxRowsAtCompileTime, MaxColsAtCompileTime> EigenvectorsType;
|
|
|
|
/** \brief Default constructor.
|
|
*
|
|
* The default constructor is useful in cases in which the user intends to
|
|
* perform decompositions via EigenSolver::compute(const MatrixType&, bool).
|
|
*
|
|
* \sa compute() for an example.
|
|
*/
|
|
GeneralizedEigenSolver() : m_eivec(), m_alphas(), m_betas(), m_isInitialized(false), m_realQZ(), m_matS(), m_tmp() {}
|
|
|
|
/** \brief Default constructor with memory preallocation
|
|
*
|
|
* Like the default constructor but with preallocation of the internal data
|
|
* according to the specified problem \a size.
|
|
* \sa GeneralizedEigenSolver()
|
|
*/
|
|
GeneralizedEigenSolver(Index size)
|
|
: m_eivec(size, size),
|
|
m_alphas(size),
|
|
m_betas(size),
|
|
m_isInitialized(false),
|
|
m_eigenvectorsOk(false),
|
|
m_realQZ(size),
|
|
m_matS(size, size),
|
|
m_tmp(size)
|
|
{}
|
|
|
|
/** \brief Constructor; computes the generalized eigendecomposition of given matrix pair.
|
|
*
|
|
* \param[in] A Square matrix whose eigendecomposition is to be computed.
|
|
* \param[in] B Square matrix whose eigendecomposition is to be computed.
|
|
* \param[in] computeEigenvectors If true, both the eigenvectors and the
|
|
* eigenvalues are computed; if false, only the eigenvalues are computed.
|
|
*
|
|
* This constructor calls compute() to compute the generalized eigenvalues
|
|
* and eigenvectors.
|
|
*
|
|
* \sa compute()
|
|
*/
|
|
GeneralizedEigenSolver(const MatrixType& A, const MatrixType& B, bool computeEigenvectors = true)
|
|
: m_eivec(A.rows(), A.cols()),
|
|
m_alphas(A.cols()),
|
|
m_betas(A.cols()),
|
|
m_isInitialized(false),
|
|
m_eigenvectorsOk(false),
|
|
m_realQZ(A.cols()),
|
|
m_matS(A.rows(), A.cols()),
|
|
m_tmp(A.cols())
|
|
{
|
|
compute(A, B, computeEigenvectors);
|
|
}
|
|
|
|
/* \brief Returns the computed generalized eigenvectors.
|
|
*
|
|
* \returns %Matrix whose columns are the (possibly complex) eigenvectors.
|
|
*
|
|
* \pre Either the constructor
|
|
* GeneralizedEigenSolver(const MatrixType&,const MatrixType&, bool) or the member function
|
|
* compute(const MatrixType&, const MatrixType& bool) has been called before, and
|
|
* \p computeEigenvectors was set to true (the default).
|
|
*
|
|
* Column \f$ k \f$ of the returned matrix is an eigenvector corresponding
|
|
* to eigenvalue number \f$ k \f$ as returned by eigenvalues(). The
|
|
* eigenvectors are normalized to have (Euclidean) norm equal to one. The
|
|
* matrix returned by this function is the matrix \f$ V \f$ in the
|
|
* generalized eigendecomposition \f$ A = B V D V^{-1} \f$, if it exists.
|
|
*
|
|
* \sa eigenvalues()
|
|
*/
|
|
// EigenvectorsType eigenvectors() const;
|
|
|
|
/** \brief Returns an expression of the computed generalized eigenvalues.
|
|
*
|
|
* \returns An expression of the column vector containing the eigenvalues.
|
|
*
|
|
* It is a shortcut for \code this->alphas().cwiseQuotient(this->betas()); \endcode
|
|
* Not that betas might contain zeros. It is therefore not recommended to use this function,
|
|
* but rather directly deal with the alphas and betas vectors.
|
|
*
|
|
* \pre Either the constructor
|
|
* GeneralizedEigenSolver(const MatrixType&,const MatrixType&,bool) or the member function
|
|
* compute(const MatrixType&,const MatrixType&,bool) has been called before.
|
|
*
|
|
* The eigenvalues are repeated according to their algebraic multiplicity,
|
|
* so there are as many eigenvalues as rows in the matrix. The eigenvalues
|
|
* are not sorted in any particular order.
|
|
*
|
|
* \sa alphas(), betas(), eigenvectors()
|
|
*/
|
|
EigenvalueType eigenvalues() const
|
|
{
|
|
eigen_assert(m_isInitialized && "GeneralizedEigenSolver is not initialized.");
|
|
return EigenvalueType(m_alphas,m_betas);
|
|
}
|
|
|
|
/** \returns A const reference to the vectors containing the alpha values
|
|
*
|
|
* This vector permits to reconstruct the j-th eigenvalues as alphas(i)/betas(j).
|
|
*
|
|
* \sa betas(), eigenvalues() */
|
|
ComplexVectorType alphas() const
|
|
{
|
|
eigen_assert(m_isInitialized && "GeneralizedEigenSolver is not initialized.");
|
|
return m_alphas;
|
|
}
|
|
|
|
/** \returns A const reference to the vectors containing the beta values
|
|
*
|
|
* This vector permits to reconstruct the j-th eigenvalues as alphas(i)/betas(j).
|
|
*
|
|
* \sa alphas(), eigenvalues() */
|
|
VectorType betas() const
|
|
{
|
|
eigen_assert(m_isInitialized && "GeneralizedEigenSolver is not initialized.");
|
|
return m_betas;
|
|
}
|
|
|
|
/** \brief Computes generalized eigendecomposition of given matrix.
|
|
*
|
|
* \param[in] A Square matrix whose eigendecomposition is to be computed.
|
|
* \param[in] B Square matrix whose eigendecomposition is to be computed.
|
|
* \param[in] computeEigenvectors If true, both the eigenvectors and the
|
|
* eigenvalues are computed; if false, only the eigenvalues are
|
|
* computed.
|
|
* \returns Reference to \c *this
|
|
*
|
|
* This function computes the eigenvalues of the real matrix \p matrix.
|
|
* The eigenvalues() function can be used to retrieve them. If
|
|
* \p computeEigenvectors is true, then the eigenvectors are also computed
|
|
* and can be retrieved by calling eigenvectors().
|
|
*
|
|
* The matrix is first reduced to real generalized Schur form using the RealQZ
|
|
* class. The generalized Schur decomposition is then used to compute the eigenvalues
|
|
* and eigenvectors.
|
|
*
|
|
* The cost of the computation is dominated by the cost of the
|
|
* generalized Schur decomposition.
|
|
*
|
|
* This method reuses of the allocated data in the GeneralizedEigenSolver object.
|
|
*/
|
|
GeneralizedEigenSolver& compute(const MatrixType& A, const MatrixType& B, bool computeEigenvectors = true);
|
|
|
|
ComputationInfo info() const
|
|
{
|
|
eigen_assert(m_isInitialized && "EigenSolver is not initialized.");
|
|
return m_realQZ.info();
|
|
}
|
|
|
|
/** Sets the maximal number of iterations allowed.
|
|
*/
|
|
GeneralizedEigenSolver& setMaxIterations(Index maxIters)
|
|
{
|
|
m_realQZ.setMaxIterations(maxIters);
|
|
return *this;
|
|
}
|
|
|
|
protected:
|
|
|
|
static void check_template_parameters()
|
|
{
|
|
EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
|
|
EIGEN_STATIC_ASSERT(!NumTraits<Scalar>::IsComplex, NUMERIC_TYPE_MUST_BE_REAL);
|
|
}
|
|
|
|
MatrixType m_eivec;
|
|
ComplexVectorType m_alphas;
|
|
VectorType m_betas;
|
|
bool m_isInitialized;
|
|
bool m_eigenvectorsOk;
|
|
RealQZ<MatrixType> m_realQZ;
|
|
MatrixType m_matS;
|
|
|
|
typedef Matrix<Scalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> ColumnVectorType;
|
|
ColumnVectorType m_tmp;
|
|
};
|
|
|
|
//template<typename MatrixType>
|
|
//typename GeneralizedEigenSolver<MatrixType>::EigenvectorsType GeneralizedEigenSolver<MatrixType>::eigenvectors() const
|
|
//{
|
|
// eigen_assert(m_isInitialized && "EigenSolver is not initialized.");
|
|
// eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
|
|
// Index n = m_eivec.cols();
|
|
// EigenvectorsType matV(n,n);
|
|
// // TODO
|
|
// return matV;
|
|
//}
|
|
|
|
template<typename MatrixType>
|
|
GeneralizedEigenSolver<MatrixType>&
|
|
GeneralizedEigenSolver<MatrixType>::compute(const MatrixType& A, const MatrixType& B, bool computeEigenvectors)
|
|
{
|
|
check_template_parameters();
|
|
|
|
using std::sqrt;
|
|
using std::abs;
|
|
eigen_assert(A.cols() == A.rows() && B.cols() == A.rows() && B.cols() == B.rows());
|
|
|
|
// Reduce to generalized real Schur form:
|
|
// A = Q S Z and B = Q T Z
|
|
m_realQZ.compute(A, B, computeEigenvectors);
|
|
|
|
if (m_realQZ.info() == Success)
|
|
{
|
|
m_matS = m_realQZ.matrixS();
|
|
if (computeEigenvectors)
|
|
m_eivec = m_realQZ.matrixZ().transpose();
|
|
|
|
// Compute eigenvalues from matS
|
|
m_alphas.resize(A.cols());
|
|
m_betas.resize(A.cols());
|
|
Index i = 0;
|
|
while (i < A.cols())
|
|
{
|
|
if (i == A.cols() - 1 || m_matS.coeff(i+1, i) == Scalar(0))
|
|
{
|
|
m_alphas.coeffRef(i) = m_matS.coeff(i, i);
|
|
m_betas.coeffRef(i) = m_realQZ.matrixT().coeff(i,i);
|
|
++i;
|
|
}
|
|
else
|
|
{
|
|
// We need to extract the generalized eigenvalues of the pair of a general 2x2 block S and a triangular 2x2 block T
|
|
// From the eigen decomposition of T = U * E * U^-1,
|
|
// we can extract the eigenvalues of (U^-1 * S * U) / E
|
|
// Here, we can take advantage that E = diag(T), and U = [ 1 T_01 ; 0 T_11-T_00], and U^-1 = [1 -T_11/(T_11-T_00) ; 0 1/(T_11-T_00)].
|
|
// Then taking beta=T_00*T_11*(T_11-T_00), we can avoid any division, and alpha is the eigenvalues of A = (U^-1 * S * U) * diag(T_11,T_00) * (T_11-T_00):
|
|
|
|
// T = [a b ; 0 c]
|
|
// S = [e f ; g h]
|
|
RealScalar a = m_realQZ.matrixT().coeff(i, i), b = m_realQZ.matrixT().coeff(i, i+1), c = m_realQZ.matrixT().coeff(i+1, i+1);
|
|
RealScalar e = m_matS.coeff(i, i), f = m_matS.coeff(i, i+1), g = m_matS.coeff(i+1, i), h = m_matS.coeff(i+1, i+1);
|
|
RealScalar d = c-a;
|
|
RealScalar gb = g*b;
|
|
Matrix<RealScalar,2,2> A;
|
|
A << (e*d-gb)*c, ((e*b+f*d-h*b)*d-gb*b)*a,
|
|
g*c , (gb+h*d)*a;
|
|
|
|
// NOTE, we could also compute the SVD of T's block during the QZ factorization so that the respective T block is guaranteed to be diagonal,
|
|
// and then we could directly apply the formula below (while taking care of scaling S columns by T11,T00):
|
|
|
|
Scalar p = Scalar(0.5) * (A.coeff(i, i) - A.coeff(i+1, i+1));
|
|
Scalar z = sqrt(abs(p * p + A.coeff(i+1, i) * A.coeff(i, i+1)));
|
|
m_alphas.coeffRef(i) = ComplexScalar(A.coeff(i+1, i+1) + p, z);
|
|
m_alphas.coeffRef(i+1) = ComplexScalar(A.coeff(i+1, i+1) + p, -z);
|
|
|
|
m_betas.coeffRef(i) =
|
|
m_betas.coeffRef(i+1) = a*c*d;
|
|
|
|
i += 2;
|
|
}
|
|
}
|
|
}
|
|
|
|
m_isInitialized = true;
|
|
m_eigenvectorsOk = false;//computeEigenvectors;
|
|
|
|
return *this;
|
|
}
|
|
|
|
} // end namespace Eigen
|
|
|
|
#endif // EIGEN_GENERALIZEDEIGENSOLVER_H
|