MYNT-EYE-S-SDK/3rdparty/ceres-solver-1.11.0/include/ceres/internal/numeric_diff.h
2019-01-03 16:25:18 +08:00

447 lines
18 KiB
C++

// Ceres Solver - A fast non-linear least squares minimizer
// Copyright 2015 Google Inc. All rights reserved.
// http://ceres-solver.org/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: sameeragarwal@google.com (Sameer Agarwal)
// mierle@gmail.com (Keir Mierle)
// tbennun@gmail.com (Tal Ben-Nun)
//
// Finite differencing routines used by NumericDiffCostFunction.
#ifndef CERES_PUBLIC_INTERNAL_NUMERIC_DIFF_H_
#define CERES_PUBLIC_INTERNAL_NUMERIC_DIFF_H_
#include <cstring>
#include "Eigen/Dense"
#include "Eigen/StdVector"
#include "ceres/cost_function.h"
#include "ceres/internal/fixed_array.h"
#include "ceres/internal/scoped_ptr.h"
#include "ceres/internal/variadic_evaluate.h"
#include "ceres/numeric_diff_options.h"
#include "ceres/types.h"
#include "glog/logging.h"
namespace ceres {
namespace internal {
// Helper templates that allow evaluation of a variadic functor or a
// CostFunction object.
template <typename CostFunctor,
int N0, int N1, int N2, int N3, int N4,
int N5, int N6, int N7, int N8, int N9 >
bool EvaluateImpl(const CostFunctor* functor,
double const* const* parameters,
double* residuals,
const void* /* NOT USED */) {
return VariadicEvaluate<CostFunctor,
double,
N0, N1, N2, N3, N4, N5, N6, N7, N8, N9>::Call(
*functor,
parameters,
residuals);
}
template <typename CostFunctor,
int N0, int N1, int N2, int N3, int N4,
int N5, int N6, int N7, int N8, int N9 >
bool EvaluateImpl(const CostFunctor* functor,
double const* const* parameters,
double* residuals,
const CostFunction* /* NOT USED */) {
return functor->Evaluate(parameters, residuals, NULL);
}
// This is split from the main class because C++ doesn't allow partial template
// specializations for member functions. The alternative is to repeat the main
// class for differing numbers of parameters, which is also unfortunate.
template <typename CostFunctor,
NumericDiffMethodType kMethod,
int kNumResiduals,
int N0, int N1, int N2, int N3, int N4,
int N5, int N6, int N7, int N8, int N9,
int kParameterBlock,
int kParameterBlockSize>
struct NumericDiff {
// Mutates parameters but must restore them before return.
static bool EvaluateJacobianForParameterBlock(
const CostFunctor* functor,
const double* residuals_at_eval_point,
const NumericDiffOptions& options,
int num_residuals,
int parameter_block_index,
int parameter_block_size,
double **parameters,
double *jacobian) {
using Eigen::Map;
using Eigen::Matrix;
using Eigen::RowMajor;
using Eigen::ColMajor;
const int num_residuals_internal =
(kNumResiduals != ceres::DYNAMIC ? kNumResiduals : num_residuals);
const int parameter_block_index_internal =
(kParameterBlock != ceres::DYNAMIC ? kParameterBlock :
parameter_block_index);
const int parameter_block_size_internal =
(kParameterBlockSize != ceres::DYNAMIC ? kParameterBlockSize :
parameter_block_size);
typedef Matrix<double, kNumResiduals, 1> ResidualVector;
typedef Matrix<double, kParameterBlockSize, 1> ParameterVector;
// The convoluted reasoning for choosing the Row/Column major
// ordering of the matrix is an artifact of the restrictions in
// Eigen that prevent it from creating RowMajor matrices with a
// single column. In these cases, we ask for a ColMajor matrix.
typedef Matrix<double,
kNumResiduals,
kParameterBlockSize,
(kParameterBlockSize == 1) ? ColMajor : RowMajor>
JacobianMatrix;
Map<JacobianMatrix> parameter_jacobian(jacobian,
num_residuals_internal,
parameter_block_size_internal);
Map<ParameterVector> x_plus_delta(
parameters[parameter_block_index_internal],
parameter_block_size_internal);
ParameterVector x(x_plus_delta);
ParameterVector step_size = x.array().abs() *
((kMethod == RIDDERS) ? options.ridders_relative_initial_step_size :
options.relative_step_size);
// It is not a good idea to make the step size arbitrarily
// small. This will lead to problems with round off and numerical
// instability when dividing by the step size. The general
// recommendation is to not go down below sqrt(epsilon).
double min_step_size = std::sqrt(std::numeric_limits<double>::epsilon());
// For Ridders' method, the initial step size is required to be large,
// thus ridders_relative_initial_step_size is used.
if (kMethod == RIDDERS) {
min_step_size = std::max(min_step_size,
options.ridders_relative_initial_step_size);
}
// For each parameter in the parameter block, use finite differences to
// compute the derivative for that parameter.
FixedArray<double> temp_residual_array(num_residuals_internal);
FixedArray<double> residual_array(num_residuals_internal);
Map<ResidualVector> residuals(residual_array.get(),
num_residuals_internal);
for (int j = 0; j < parameter_block_size_internal; ++j) {
const double delta = std::max(min_step_size, step_size(j));
if (kMethod == RIDDERS) {
if (!EvaluateRiddersJacobianColumn(functor, j, delta,
options,
num_residuals_internal,
parameter_block_size_internal,
x.data(),
residuals_at_eval_point,
parameters,
x_plus_delta.data(),
temp_residual_array.get(),
residual_array.get())) {
return false;
}
} else {
if (!EvaluateJacobianColumn(functor, j, delta,
num_residuals_internal,
parameter_block_size_internal,
x.data(),
residuals_at_eval_point,
parameters,
x_plus_delta.data(),
temp_residual_array.get(),
residual_array.get())) {
return false;
}
}
parameter_jacobian.col(j).matrix() = residuals;
}
return true;
}
static bool EvaluateJacobianColumn(const CostFunctor* functor,
int parameter_index,
double delta,
int num_residuals,
int parameter_block_size,
const double* x_ptr,
const double* residuals_at_eval_point,
double** parameters,
double* x_plus_delta_ptr,
double* temp_residuals_ptr,
double* residuals_ptr) {
using Eigen::Map;
using Eigen::Matrix;
typedef Matrix<double, kNumResiduals, 1> ResidualVector;
typedef Matrix<double, kParameterBlockSize, 1> ParameterVector;
Map<const ParameterVector> x(x_ptr, parameter_block_size);
Map<ParameterVector> x_plus_delta(x_plus_delta_ptr,
parameter_block_size);
Map<ResidualVector> residuals(residuals_ptr, num_residuals);
Map<ResidualVector> temp_residuals(temp_residuals_ptr, num_residuals);
// Mutate 1 element at a time and then restore.
x_plus_delta(parameter_index) = x(parameter_index) + delta;
if (!EvaluateImpl<CostFunctor, N0, N1, N2, N3, N4, N5, N6, N7, N8, N9>(
functor, parameters, residuals.data(), functor)) {
return false;
}
// Compute this column of the jacobian in 3 steps:
// 1. Store residuals for the forward part.
// 2. Subtract residuals for the backward (or 0) part.
// 3. Divide out the run.
double one_over_delta = 1.0 / delta;
if (kMethod == CENTRAL || kMethod == RIDDERS) {
// Compute the function on the other side of x(parameter_index).
x_plus_delta(parameter_index) = x(parameter_index) - delta;
if (!EvaluateImpl<CostFunctor, N0, N1, N2, N3, N4, N5, N6, N7, N8, N9>(
functor, parameters, temp_residuals.data(), functor)) {
return false;
}
residuals -= temp_residuals;
one_over_delta /= 2;
} else {
// Forward difference only; reuse existing residuals evaluation.
residuals -=
Map<const ResidualVector>(residuals_at_eval_point,
num_residuals);
}
// Restore x_plus_delta.
x_plus_delta(parameter_index) = x(parameter_index);
// Divide out the run to get slope.
residuals *= one_over_delta;
return true;
}
// This numeric difference implementation uses adaptive differentiation
// on the parameters to obtain the Jacobian matrix. The adaptive algorithm
// is based on Ridders' method for adaptive differentiation, which creates
// a Romberg tableau from varying step sizes and extrapolates the
// intermediate results to obtain the current computational error.
//
// References:
// C.J.F. Ridders, Accurate computation of F'(x) and F'(x) F"(x), Advances
// in Engineering Software (1978), Volume 4, Issue 2, April 1982,
// Pages 75-76, ISSN 0141-1195,
// http://dx.doi.org/10.1016/S0141-1195(82)80057-0.
static bool EvaluateRiddersJacobianColumn(
const CostFunctor* functor,
int parameter_index,
double delta,
const NumericDiffOptions& options,
int num_residuals,
int parameter_block_size,
const double* x_ptr,
const double* residuals_at_eval_point,
double** parameters,
double* x_plus_delta_ptr,
double* temp_residuals_ptr,
double* residuals_ptr) {
using Eigen::Map;
using Eigen::Matrix;
using Eigen::aligned_allocator;
typedef Matrix<double, kNumResiduals, 1> ResidualVector;
typedef Matrix<double, kNumResiduals, Eigen::Dynamic> ResidualCandidateMatrix;
typedef Matrix<double, kParameterBlockSize, 1> ParameterVector;
Map<const ParameterVector> x(x_ptr, parameter_block_size);
Map<ParameterVector> x_plus_delta(x_plus_delta_ptr,
parameter_block_size);
Map<ResidualVector> residuals(residuals_ptr, num_residuals);
Map<ResidualVector> temp_residuals(temp_residuals_ptr, num_residuals);
// In order for the algorithm to converge, the step size should be
// initialized to a value that is large enough to produce a significant
// change in the function.
// As the derivative is estimated, the step size decreases.
// By default, the step sizes are chosen so that the middle column
// of the Romberg tableau uses the input delta.
double current_step_size = delta *
pow(options.ridders_step_shrink_factor,
options.max_num_ridders_extrapolations / 2);
// Double-buffering temporary differential candidate vectors
// from previous step size.
ResidualCandidateMatrix stepsize_candidates_a(
num_residuals,
options.max_num_ridders_extrapolations);
ResidualCandidateMatrix stepsize_candidates_b(
num_residuals,
options.max_num_ridders_extrapolations);
ResidualCandidateMatrix* current_candidates = &stepsize_candidates_a;
ResidualCandidateMatrix* previous_candidates = &stepsize_candidates_b;
// Represents the computational error of the derivative. This variable is
// initially set to a large value, and is set to the difference between
// current and previous finite difference extrapolations.
// norm_error is supposed to decrease as the finite difference tableau
// generation progresses, serving both as an estimate for differentiation
// error and as a measure of differentiation numerical stability.
double norm_error = std::numeric_limits<double>::max();
// Loop over decreasing step sizes until:
// 1. Error is smaller than a given value (ridders_epsilon),
// 2. Maximal order of extrapolation reached, or
// 3. Extrapolation becomes numerically unstable.
for (int i = 0; i < options.max_num_ridders_extrapolations; ++i) {
// Compute the numerical derivative at this step size.
if (!EvaluateJacobianColumn(functor, parameter_index, current_step_size,
num_residuals,
parameter_block_size,
x.data(),
residuals_at_eval_point,
parameters,
x_plus_delta.data(),
temp_residuals.data(),
current_candidates->col(0).data())) {
// Something went wrong; bail.
return false;
}
// Store initial results.
if (i == 0) {
residuals = current_candidates->col(0);
}
// Shrink differentiation step size.
current_step_size /= options.ridders_step_shrink_factor;
// Extrapolation factor for Richardson acceleration method (see below).
double richardson_factor = options.ridders_step_shrink_factor *
options.ridders_step_shrink_factor;
for (int k = 1; k <= i; ++k) {
// Extrapolate the various orders of finite differences using
// the Richardson acceleration method.
current_candidates->col(k) =
(richardson_factor * current_candidates->col(k - 1) -
previous_candidates->col(k - 1)) / (richardson_factor - 1.0);
richardson_factor *= options.ridders_step_shrink_factor *
options.ridders_step_shrink_factor;
// Compute the difference between the previous value and the current.
double candidate_error = std::max(
(current_candidates->col(k) -
current_candidates->col(k - 1)).norm(),
(current_candidates->col(k) -
previous_candidates->col(k - 1)).norm());
// If the error has decreased, update results.
if (candidate_error <= norm_error) {
norm_error = candidate_error;
residuals = current_candidates->col(k);
// If the error is small enough, stop.
if (norm_error < options.ridders_epsilon) {
break;
}
}
}
// After breaking out of the inner loop, declare convergence.
if (norm_error < options.ridders_epsilon) {
break;
}
// Check to see if the current gradient estimate is numerically unstable.
// If so, bail out and return the last stable result.
if (i > 0) {
double tableau_error = (current_candidates->col(i) -
previous_candidates->col(i - 1)).norm();
// Compare current error to the chosen candidate's error.
if (tableau_error >= 2 * norm_error) {
break;
}
}
std::swap(current_candidates, previous_candidates);
}
return true;
}
};
template <typename CostFunctor,
NumericDiffMethodType kMethod,
int kNumResiduals,
int N0, int N1, int N2, int N3, int N4,
int N5, int N6, int N7, int N8, int N9,
int kParameterBlock>
struct NumericDiff<CostFunctor, kMethod, kNumResiduals,
N0, N1, N2, N3, N4, N5, N6, N7, N8, N9,
kParameterBlock, 0> {
// Mutates parameters but must restore them before return.
static bool EvaluateJacobianForParameterBlock(
const CostFunctor* functor,
const double* residuals_at_eval_point,
const NumericDiffOptions& options,
const int num_residuals,
const int parameter_block_index,
const int parameter_block_size,
double **parameters,
double *jacobian) {
// Silence unused parameter compiler warnings.
(void)functor;
(void)residuals_at_eval_point;
(void)options;
(void)num_residuals;
(void)parameter_block_index;
(void)parameter_block_size;
(void)parameters;
(void)jacobian;
LOG(FATAL) << "Control should never reach here.";
return true;
}
};
} // namespace internal
} // namespace ceres
#endif // CERES_PUBLIC_INTERNAL_NUMERIC_DIFF_H_