403 lines
13 KiB
C++
403 lines
13 KiB
C++
// Ceres Solver - A fast non-linear least squares minimizer
|
|
// Copyright 2015 Google Inc. All rights reserved.
|
|
// http://ceres-solver.org/
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
// * Neither the name of Google Inc. nor the names of its contributors may be
|
|
// used to endorse or promote products derived from this software without
|
|
// specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
|
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
// POSSIBILITY OF SUCH DAMAGE.
|
|
//
|
|
// Author: sameeragarwal@google.com (Sameer Agarwal)
|
|
|
|
#include "ceres/solver.h"
|
|
|
|
#include <limits>
|
|
#include <cmath>
|
|
#include <vector>
|
|
#include "gtest/gtest.h"
|
|
#include "ceres/internal/scoped_ptr.h"
|
|
#include "ceres/autodiff_cost_function.h"
|
|
#include "ceres/sized_cost_function.h"
|
|
#include "ceres/problem.h"
|
|
#include "ceres/problem_impl.h"
|
|
|
|
namespace ceres {
|
|
namespace internal {
|
|
|
|
using std::string;
|
|
|
|
TEST(SolverOptions, DefaultTrustRegionOptionsAreValid) {
|
|
Solver::Options options;
|
|
options.minimizer_type = TRUST_REGION;
|
|
string error;
|
|
EXPECT_TRUE(options.IsValid(&error)) << error;
|
|
}
|
|
|
|
TEST(SolverOptions, DefaultLineSearchOptionsAreValid) {
|
|
Solver::Options options;
|
|
options.minimizer_type = LINE_SEARCH;
|
|
string error;
|
|
EXPECT_TRUE(options.IsValid(&error)) << error;
|
|
}
|
|
|
|
struct QuadraticCostFunctor {
|
|
template <typename T> bool operator()(const T* const x,
|
|
T* residual) const {
|
|
residual[0] = T(5.0) - *x;
|
|
return true;
|
|
}
|
|
|
|
static CostFunction* Create() {
|
|
return new AutoDiffCostFunction<QuadraticCostFunctor, 1, 1>(
|
|
new QuadraticCostFunctor);
|
|
}
|
|
};
|
|
|
|
struct RememberingCallback : public IterationCallback {
|
|
explicit RememberingCallback(double *x) : calls(0), x(x) {}
|
|
virtual ~RememberingCallback() {}
|
|
virtual CallbackReturnType operator()(const IterationSummary& summary) {
|
|
x_values.push_back(*x);
|
|
return SOLVER_CONTINUE;
|
|
}
|
|
int calls;
|
|
double *x;
|
|
std::vector<double> x_values;
|
|
};
|
|
|
|
TEST(Solver, UpdateStateEveryIterationOption) {
|
|
double x = 50.0;
|
|
const double original_x = x;
|
|
|
|
scoped_ptr<CostFunction> cost_function(QuadraticCostFunctor::Create());
|
|
Problem::Options problem_options;
|
|
problem_options.cost_function_ownership = DO_NOT_TAKE_OWNERSHIP;
|
|
Problem problem(problem_options);
|
|
problem.AddResidualBlock(cost_function.get(), NULL, &x);
|
|
|
|
Solver::Options options;
|
|
options.linear_solver_type = DENSE_QR;
|
|
|
|
RememberingCallback callback(&x);
|
|
options.callbacks.push_back(&callback);
|
|
|
|
Solver::Summary summary;
|
|
|
|
int num_iterations;
|
|
|
|
// First try: no updating.
|
|
Solve(options, &problem, &summary);
|
|
num_iterations = summary.num_successful_steps +
|
|
summary.num_unsuccessful_steps;
|
|
EXPECT_GT(num_iterations, 1);
|
|
for (int i = 0; i < callback.x_values.size(); ++i) {
|
|
EXPECT_EQ(50.0, callback.x_values[i]);
|
|
}
|
|
|
|
// Second try: with updating
|
|
x = 50.0;
|
|
options.update_state_every_iteration = true;
|
|
callback.x_values.clear();
|
|
Solve(options, &problem, &summary);
|
|
num_iterations = summary.num_successful_steps +
|
|
summary.num_unsuccessful_steps;
|
|
EXPECT_GT(num_iterations, 1);
|
|
EXPECT_EQ(original_x, callback.x_values[0]);
|
|
EXPECT_NE(original_x, callback.x_values[1]);
|
|
}
|
|
|
|
// The parameters must be in separate blocks so that they can be individually
|
|
// set constant or not.
|
|
struct Quadratic4DCostFunction {
|
|
template <typename T> bool operator()(const T* const x,
|
|
const T* const y,
|
|
const T* const z,
|
|
const T* const w,
|
|
T* residual) const {
|
|
// A 4-dimension axis-aligned quadratic.
|
|
residual[0] = T(10.0) - *x +
|
|
T(20.0) - *y +
|
|
T(30.0) - *z +
|
|
T(40.0) - *w;
|
|
return true;
|
|
}
|
|
|
|
static CostFunction* Create() {
|
|
return new AutoDiffCostFunction<Quadratic4DCostFunction, 1, 1, 1, 1, 1>(
|
|
new Quadratic4DCostFunction);
|
|
}
|
|
};
|
|
|
|
// A cost function that simply returns its argument.
|
|
class UnaryIdentityCostFunction : public SizedCostFunction<1, 1> {
|
|
public:
|
|
virtual bool Evaluate(double const* const* parameters,
|
|
double* residuals,
|
|
double** jacobians) const {
|
|
residuals[0] = parameters[0][0];
|
|
if (jacobians != NULL && jacobians[0] != NULL) {
|
|
jacobians[0][0] = 1.0;
|
|
}
|
|
return true;
|
|
}
|
|
};
|
|
|
|
TEST(Solver, TrustRegionProblemHasNoParameterBlocks) {
|
|
Problem problem;
|
|
Solver::Options options;
|
|
options.minimizer_type = TRUST_REGION;
|
|
Solver::Summary summary;
|
|
Solve(options, &problem, &summary);
|
|
EXPECT_EQ(summary.termination_type, CONVERGENCE);
|
|
EXPECT_EQ(summary.message,
|
|
"Function tolerance reached. "
|
|
"No non-constant parameter blocks found.");
|
|
}
|
|
|
|
TEST(Solver, LineSearchProblemHasNoParameterBlocks) {
|
|
Problem problem;
|
|
Solver::Options options;
|
|
options.minimizer_type = LINE_SEARCH;
|
|
Solver::Summary summary;
|
|
Solve(options, &problem, &summary);
|
|
EXPECT_EQ(summary.termination_type, CONVERGENCE);
|
|
EXPECT_EQ(summary.message,
|
|
"Function tolerance reached. "
|
|
"No non-constant parameter blocks found.");
|
|
}
|
|
|
|
TEST(Solver, TrustRegionProblemHasZeroResiduals) {
|
|
Problem problem;
|
|
double x = 1;
|
|
problem.AddParameterBlock(&x, 1);
|
|
Solver::Options options;
|
|
options.minimizer_type = TRUST_REGION;
|
|
Solver::Summary summary;
|
|
Solve(options, &problem, &summary);
|
|
EXPECT_EQ(summary.termination_type, CONVERGENCE);
|
|
EXPECT_EQ(summary.message,
|
|
"Function tolerance reached. "
|
|
"No non-constant parameter blocks found.");
|
|
}
|
|
|
|
TEST(Solver, LineSearchProblemHasZeroResiduals) {
|
|
Problem problem;
|
|
double x = 1;
|
|
problem.AddParameterBlock(&x, 1);
|
|
Solver::Options options;
|
|
options.minimizer_type = LINE_SEARCH;
|
|
Solver::Summary summary;
|
|
Solve(options, &problem, &summary);
|
|
EXPECT_EQ(summary.termination_type, CONVERGENCE);
|
|
EXPECT_EQ(summary.message,
|
|
"Function tolerance reached. "
|
|
"No non-constant parameter blocks found.");
|
|
}
|
|
|
|
TEST(Solver, TrustRegionProblemIsConstant) {
|
|
Problem problem;
|
|
double x = 1;
|
|
problem.AddResidualBlock(new UnaryIdentityCostFunction, NULL, &x);
|
|
problem.SetParameterBlockConstant(&x);
|
|
Solver::Options options;
|
|
options.minimizer_type = TRUST_REGION;
|
|
Solver::Summary summary;
|
|
Solve(options, &problem, &summary);
|
|
EXPECT_EQ(summary.termination_type, CONVERGENCE);
|
|
EXPECT_EQ(summary.initial_cost, 1.0 / 2.0);
|
|
EXPECT_EQ(summary.final_cost, 1.0 / 2.0);
|
|
}
|
|
|
|
TEST(Solver, LineSearchProblemIsConstant) {
|
|
Problem problem;
|
|
double x = 1;
|
|
problem.AddResidualBlock(new UnaryIdentityCostFunction, NULL, &x);
|
|
problem.SetParameterBlockConstant(&x);
|
|
Solver::Options options;
|
|
options.minimizer_type = LINE_SEARCH;
|
|
Solver::Summary summary;
|
|
Solve(options, &problem, &summary);
|
|
EXPECT_EQ(summary.termination_type, CONVERGENCE);
|
|
EXPECT_EQ(summary.initial_cost, 1.0 / 2.0);
|
|
EXPECT_EQ(summary.final_cost, 1.0 / 2.0);
|
|
}
|
|
|
|
#if defined(CERES_NO_SUITESPARSE)
|
|
TEST(Solver, SparseNormalCholeskyNoSuiteSparse) {
|
|
Solver::Options options;
|
|
options.sparse_linear_algebra_library_type = SUITE_SPARSE;
|
|
options.linear_solver_type = SPARSE_NORMAL_CHOLESKY;
|
|
string message;
|
|
EXPECT_FALSE(options.IsValid(&message));
|
|
}
|
|
|
|
TEST(Solver, SparseSchurNoSuiteSparse) {
|
|
Solver::Options options;
|
|
options.sparse_linear_algebra_library_type = SUITE_SPARSE;
|
|
options.linear_solver_type = SPARSE_SCHUR;
|
|
string message;
|
|
EXPECT_FALSE(options.IsValid(&message));
|
|
}
|
|
#endif
|
|
|
|
#if defined(CERES_NO_CXSPARSE)
|
|
TEST(Solver, SparseNormalCholeskyNoCXSparse) {
|
|
Solver::Options options;
|
|
options.sparse_linear_algebra_library_type = CX_SPARSE;
|
|
options.linear_solver_type = SPARSE_NORMAL_CHOLESKY;
|
|
string message;
|
|
EXPECT_FALSE(options.IsValid(&message));
|
|
}
|
|
|
|
TEST(Solver, SparseSchurNoCXSparse) {
|
|
Solver::Options options;
|
|
options.sparse_linear_algebra_library_type = CX_SPARSE;
|
|
options.linear_solver_type = SPARSE_SCHUR;
|
|
string message;
|
|
EXPECT_FALSE(options.IsValid(&message));
|
|
}
|
|
#endif
|
|
|
|
#if !defined(CERES_USE_EIGEN_SPARSE)
|
|
TEST(Solver, SparseNormalCholeskyNoEigenSparse) {
|
|
Solver::Options options;
|
|
options.sparse_linear_algebra_library_type = EIGEN_SPARSE;
|
|
options.linear_solver_type = SPARSE_NORMAL_CHOLESKY;
|
|
string message;
|
|
EXPECT_FALSE(options.IsValid(&message));
|
|
}
|
|
|
|
TEST(Solver, SparseSchurNoEigenSparse) {
|
|
Solver::Options options;
|
|
options.sparse_linear_algebra_library_type = EIGEN_SPARSE;
|
|
options.linear_solver_type = SPARSE_SCHUR;
|
|
string message;
|
|
EXPECT_FALSE(options.IsValid(&message));
|
|
}
|
|
#endif
|
|
|
|
TEST(Solver, SparseNormalCholeskyNoSparseLibrary) {
|
|
Solver::Options options;
|
|
options.sparse_linear_algebra_library_type = NO_SPARSE;
|
|
options.linear_solver_type = SPARSE_NORMAL_CHOLESKY;
|
|
string message;
|
|
EXPECT_FALSE(options.IsValid(&message));
|
|
}
|
|
|
|
TEST(Solver, SparseSchurNoSparseLibrary) {
|
|
Solver::Options options;
|
|
options.sparse_linear_algebra_library_type = NO_SPARSE;
|
|
options.linear_solver_type = SPARSE_SCHUR;
|
|
string message;
|
|
EXPECT_FALSE(options.IsValid(&message));
|
|
}
|
|
|
|
TEST(Solver, IterativeSchurWithClusterJacobiPerconditionerNoSparseLibrary) {
|
|
Solver::Options options;
|
|
options.sparse_linear_algebra_library_type = NO_SPARSE;
|
|
options.linear_solver_type = ITERATIVE_SCHUR;
|
|
// Requires SuiteSparse.
|
|
options.preconditioner_type = CLUSTER_JACOBI;
|
|
string message;
|
|
EXPECT_FALSE(options.IsValid(&message));
|
|
}
|
|
|
|
TEST(Solver, IterativeSchurWithClusterTridiagonalPerconditionerNoSparseLibrary) {
|
|
Solver::Options options;
|
|
options.sparse_linear_algebra_library_type = NO_SPARSE;
|
|
options.linear_solver_type = ITERATIVE_SCHUR;
|
|
// Requires SuiteSparse.
|
|
options.preconditioner_type = CLUSTER_TRIDIAGONAL;
|
|
string message;
|
|
EXPECT_FALSE(options.IsValid(&message));
|
|
}
|
|
|
|
TEST(Solver, IterativeLinearSolverForDogleg) {
|
|
Solver::Options options;
|
|
options.trust_region_strategy_type = DOGLEG;
|
|
string message;
|
|
options.linear_solver_type = ITERATIVE_SCHUR;
|
|
EXPECT_FALSE(options.IsValid(&message));
|
|
|
|
options.linear_solver_type = CGNR;
|
|
EXPECT_FALSE(options.IsValid(&message));
|
|
}
|
|
|
|
TEST(Solver, LinearSolverTypeNormalOperation) {
|
|
Solver::Options options;
|
|
options.linear_solver_type = DENSE_QR;
|
|
|
|
string message;
|
|
EXPECT_TRUE(options.IsValid(&message));
|
|
|
|
options.linear_solver_type = DENSE_NORMAL_CHOLESKY;
|
|
EXPECT_TRUE(options.IsValid(&message));
|
|
|
|
options.linear_solver_type = DENSE_SCHUR;
|
|
EXPECT_TRUE(options.IsValid(&message));
|
|
|
|
options.linear_solver_type = SPARSE_SCHUR;
|
|
#if defined(CERES_NO_SUITESPARSE) && \
|
|
defined(CERES_NO_CXSPARSE) && \
|
|
!defined(CERES_USE_EIGEN_SPARSE)
|
|
EXPECT_FALSE(options.IsValid(&message));
|
|
#else
|
|
EXPECT_TRUE(options.IsValid(&message));
|
|
#endif
|
|
|
|
options.linear_solver_type = ITERATIVE_SCHUR;
|
|
EXPECT_TRUE(options.IsValid(&message));
|
|
}
|
|
|
|
template<int kNumResiduals, int N1 = 0, int N2 = 0, int N3 = 0>
|
|
class DummyCostFunction : public SizedCostFunction<kNumResiduals, N1, N2, N3> {
|
|
public:
|
|
bool Evaluate(double const* const* parameters,
|
|
double* residuals,
|
|
double** jacobians) const {
|
|
for (int i = 0; i < kNumResiduals; ++i) {
|
|
residuals[i] = kNumResiduals * kNumResiduals + i;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
};
|
|
|
|
TEST(Solver, FixedCostForConstantProblem) {
|
|
double x = 1.0;
|
|
Problem problem;
|
|
problem.AddResidualBlock(new DummyCostFunction<2, 1>(), NULL, &x);
|
|
problem.SetParameterBlockConstant(&x);
|
|
const double expected_cost = 41.0 / 2.0; // 1/2 * ((4 + 0)^2 + (4 + 1)^2)
|
|
Solver::Options options;
|
|
Solver::Summary summary;
|
|
Solve(options, &problem, &summary);
|
|
EXPECT_TRUE(summary.IsSolutionUsable());
|
|
EXPECT_EQ(summary.fixed_cost, expected_cost);
|
|
EXPECT_EQ(summary.initial_cost, expected_cost);
|
|
EXPECT_EQ(summary.final_cost, expected_cost);
|
|
EXPECT_EQ(summary.iterations.size(), 0);
|
|
}
|
|
|
|
} // namespace internal
|
|
} // namespace ceres
|