374 lines
14 KiB
C++
374 lines
14 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
|
|
// Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#ifndef EIGEN_HESSENBERGDECOMPOSITION_H
|
|
#define EIGEN_HESSENBERGDECOMPOSITION_H
|
|
|
|
namespace Eigen {
|
|
|
|
namespace internal {
|
|
|
|
template<typename MatrixType> struct HessenbergDecompositionMatrixHReturnType;
|
|
template<typename MatrixType>
|
|
struct traits<HessenbergDecompositionMatrixHReturnType<MatrixType> >
|
|
{
|
|
typedef MatrixType ReturnType;
|
|
};
|
|
|
|
}
|
|
|
|
/** \eigenvalues_module \ingroup Eigenvalues_Module
|
|
*
|
|
*
|
|
* \class HessenbergDecomposition
|
|
*
|
|
* \brief Reduces a square matrix to Hessenberg form by an orthogonal similarity transformation
|
|
*
|
|
* \tparam _MatrixType the type of the matrix of which we are computing the Hessenberg decomposition
|
|
*
|
|
* This class performs an Hessenberg decomposition of a matrix \f$ A \f$. In
|
|
* the real case, the Hessenberg decomposition consists of an orthogonal
|
|
* matrix \f$ Q \f$ and a Hessenberg matrix \f$ H \f$ such that \f$ A = Q H
|
|
* Q^T \f$. An orthogonal matrix is a matrix whose inverse equals its
|
|
* transpose (\f$ Q^{-1} = Q^T \f$). A Hessenberg matrix has zeros below the
|
|
* subdiagonal, so it is almost upper triangular. The Hessenberg decomposition
|
|
* of a complex matrix is \f$ A = Q H Q^* \f$ with \f$ Q \f$ unitary (that is,
|
|
* \f$ Q^{-1} = Q^* \f$).
|
|
*
|
|
* Call the function compute() to compute the Hessenberg decomposition of a
|
|
* given matrix. Alternatively, you can use the
|
|
* HessenbergDecomposition(const MatrixType&) constructor which computes the
|
|
* Hessenberg decomposition at construction time. Once the decomposition is
|
|
* computed, you can use the matrixH() and matrixQ() functions to construct
|
|
* the matrices H and Q in the decomposition.
|
|
*
|
|
* The documentation for matrixH() contains an example of the typical use of
|
|
* this class.
|
|
*
|
|
* \sa class ComplexSchur, class Tridiagonalization, \ref QR_Module "QR Module"
|
|
*/
|
|
template<typename _MatrixType> class HessenbergDecomposition
|
|
{
|
|
public:
|
|
|
|
/** \brief Synonym for the template parameter \p _MatrixType. */
|
|
typedef _MatrixType MatrixType;
|
|
|
|
enum {
|
|
Size = MatrixType::RowsAtCompileTime,
|
|
SizeMinusOne = Size == Dynamic ? Dynamic : Size - 1,
|
|
Options = MatrixType::Options,
|
|
MaxSize = MatrixType::MaxRowsAtCompileTime,
|
|
MaxSizeMinusOne = MaxSize == Dynamic ? Dynamic : MaxSize - 1
|
|
};
|
|
|
|
/** \brief Scalar type for matrices of type #MatrixType. */
|
|
typedef typename MatrixType::Scalar Scalar;
|
|
typedef typename MatrixType::Index Index;
|
|
|
|
/** \brief Type for vector of Householder coefficients.
|
|
*
|
|
* This is column vector with entries of type #Scalar. The length of the
|
|
* vector is one less than the size of #MatrixType, if it is a fixed-side
|
|
* type.
|
|
*/
|
|
typedef Matrix<Scalar, SizeMinusOne, 1, Options & ~RowMajor, MaxSizeMinusOne, 1> CoeffVectorType;
|
|
|
|
/** \brief Return type of matrixQ() */
|
|
typedef HouseholderSequence<MatrixType,typename internal::remove_all<typename CoeffVectorType::ConjugateReturnType>::type> HouseholderSequenceType;
|
|
|
|
typedef internal::HessenbergDecompositionMatrixHReturnType<MatrixType> MatrixHReturnType;
|
|
|
|
/** \brief Default constructor; the decomposition will be computed later.
|
|
*
|
|
* \param [in] size The size of the matrix whose Hessenberg decomposition will be computed.
|
|
*
|
|
* The default constructor is useful in cases in which the user intends to
|
|
* perform decompositions via compute(). The \p size parameter is only
|
|
* used as a hint. It is not an error to give a wrong \p size, but it may
|
|
* impair performance.
|
|
*
|
|
* \sa compute() for an example.
|
|
*/
|
|
HessenbergDecomposition(Index size = Size==Dynamic ? 2 : Size)
|
|
: m_matrix(size,size),
|
|
m_temp(size),
|
|
m_isInitialized(false)
|
|
{
|
|
if(size>1)
|
|
m_hCoeffs.resize(size-1);
|
|
}
|
|
|
|
/** \brief Constructor; computes Hessenberg decomposition of given matrix.
|
|
*
|
|
* \param[in] matrix Square matrix whose Hessenberg decomposition is to be computed.
|
|
*
|
|
* This constructor calls compute() to compute the Hessenberg
|
|
* decomposition.
|
|
*
|
|
* \sa matrixH() for an example.
|
|
*/
|
|
HessenbergDecomposition(const MatrixType& matrix)
|
|
: m_matrix(matrix),
|
|
m_temp(matrix.rows()),
|
|
m_isInitialized(false)
|
|
{
|
|
if(matrix.rows()<2)
|
|
{
|
|
m_isInitialized = true;
|
|
return;
|
|
}
|
|
m_hCoeffs.resize(matrix.rows()-1,1);
|
|
_compute(m_matrix, m_hCoeffs, m_temp);
|
|
m_isInitialized = true;
|
|
}
|
|
|
|
/** \brief Computes Hessenberg decomposition of given matrix.
|
|
*
|
|
* \param[in] matrix Square matrix whose Hessenberg decomposition is to be computed.
|
|
* \returns Reference to \c *this
|
|
*
|
|
* The Hessenberg decomposition is computed by bringing the columns of the
|
|
* matrix successively in the required form using Householder reflections
|
|
* (see, e.g., Algorithm 7.4.2 in Golub \& Van Loan, <i>%Matrix
|
|
* Computations</i>). The cost is \f$ 10n^3/3 \f$ flops, where \f$ n \f$
|
|
* denotes the size of the given matrix.
|
|
*
|
|
* This method reuses of the allocated data in the HessenbergDecomposition
|
|
* object.
|
|
*
|
|
* Example: \include HessenbergDecomposition_compute.cpp
|
|
* Output: \verbinclude HessenbergDecomposition_compute.out
|
|
*/
|
|
HessenbergDecomposition& compute(const MatrixType& matrix)
|
|
{
|
|
m_matrix = matrix;
|
|
if(matrix.rows()<2)
|
|
{
|
|
m_isInitialized = true;
|
|
return *this;
|
|
}
|
|
m_hCoeffs.resize(matrix.rows()-1,1);
|
|
_compute(m_matrix, m_hCoeffs, m_temp);
|
|
m_isInitialized = true;
|
|
return *this;
|
|
}
|
|
|
|
/** \brief Returns the Householder coefficients.
|
|
*
|
|
* \returns a const reference to the vector of Householder coefficients
|
|
*
|
|
* \pre Either the constructor HessenbergDecomposition(const MatrixType&)
|
|
* or the member function compute(const MatrixType&) has been called
|
|
* before to compute the Hessenberg decomposition of a matrix.
|
|
*
|
|
* The Householder coefficients allow the reconstruction of the matrix
|
|
* \f$ Q \f$ in the Hessenberg decomposition from the packed data.
|
|
*
|
|
* \sa packedMatrix(), \ref Householder_Module "Householder module"
|
|
*/
|
|
const CoeffVectorType& householderCoefficients() const
|
|
{
|
|
eigen_assert(m_isInitialized && "HessenbergDecomposition is not initialized.");
|
|
return m_hCoeffs;
|
|
}
|
|
|
|
/** \brief Returns the internal representation of the decomposition
|
|
*
|
|
* \returns a const reference to a matrix with the internal representation
|
|
* of the decomposition.
|
|
*
|
|
* \pre Either the constructor HessenbergDecomposition(const MatrixType&)
|
|
* or the member function compute(const MatrixType&) has been called
|
|
* before to compute the Hessenberg decomposition of a matrix.
|
|
*
|
|
* The returned matrix contains the following information:
|
|
* - the upper part and lower sub-diagonal represent the Hessenberg matrix H
|
|
* - the rest of the lower part contains the Householder vectors that, combined with
|
|
* Householder coefficients returned by householderCoefficients(),
|
|
* allows to reconstruct the matrix Q as
|
|
* \f$ Q = H_{N-1} \ldots H_1 H_0 \f$.
|
|
* Here, the matrices \f$ H_i \f$ are the Householder transformations
|
|
* \f$ H_i = (I - h_i v_i v_i^T) \f$
|
|
* where \f$ h_i \f$ is the \f$ i \f$th Householder coefficient and
|
|
* \f$ v_i \f$ is the Householder vector defined by
|
|
* \f$ v_i = [ 0, \ldots, 0, 1, M(i+2,i), \ldots, M(N-1,i) ]^T \f$
|
|
* with M the matrix returned by this function.
|
|
*
|
|
* See LAPACK for further details on this packed storage.
|
|
*
|
|
* Example: \include HessenbergDecomposition_packedMatrix.cpp
|
|
* Output: \verbinclude HessenbergDecomposition_packedMatrix.out
|
|
*
|
|
* \sa householderCoefficients()
|
|
*/
|
|
const MatrixType& packedMatrix() const
|
|
{
|
|
eigen_assert(m_isInitialized && "HessenbergDecomposition is not initialized.");
|
|
return m_matrix;
|
|
}
|
|
|
|
/** \brief Reconstructs the orthogonal matrix Q in the decomposition
|
|
*
|
|
* \returns object representing the matrix Q
|
|
*
|
|
* \pre Either the constructor HessenbergDecomposition(const MatrixType&)
|
|
* or the member function compute(const MatrixType&) has been called
|
|
* before to compute the Hessenberg decomposition of a matrix.
|
|
*
|
|
* This function returns a light-weight object of template class
|
|
* HouseholderSequence. You can either apply it directly to a matrix or
|
|
* you can convert it to a matrix of type #MatrixType.
|
|
*
|
|
* \sa matrixH() for an example, class HouseholderSequence
|
|
*/
|
|
HouseholderSequenceType matrixQ() const
|
|
{
|
|
eigen_assert(m_isInitialized && "HessenbergDecomposition is not initialized.");
|
|
return HouseholderSequenceType(m_matrix, m_hCoeffs.conjugate())
|
|
.setLength(m_matrix.rows() - 1)
|
|
.setShift(1);
|
|
}
|
|
|
|
/** \brief Constructs the Hessenberg matrix H in the decomposition
|
|
*
|
|
* \returns expression object representing the matrix H
|
|
*
|
|
* \pre Either the constructor HessenbergDecomposition(const MatrixType&)
|
|
* or the member function compute(const MatrixType&) has been called
|
|
* before to compute the Hessenberg decomposition of a matrix.
|
|
*
|
|
* The object returned by this function constructs the Hessenberg matrix H
|
|
* when it is assigned to a matrix or otherwise evaluated. The matrix H is
|
|
* constructed from the packed matrix as returned by packedMatrix(): The
|
|
* upper part (including the subdiagonal) of the packed matrix contains
|
|
* the matrix H. It may sometimes be better to directly use the packed
|
|
* matrix instead of constructing the matrix H.
|
|
*
|
|
* Example: \include HessenbergDecomposition_matrixH.cpp
|
|
* Output: \verbinclude HessenbergDecomposition_matrixH.out
|
|
*
|
|
* \sa matrixQ(), packedMatrix()
|
|
*/
|
|
MatrixHReturnType matrixH() const
|
|
{
|
|
eigen_assert(m_isInitialized && "HessenbergDecomposition is not initialized.");
|
|
return MatrixHReturnType(*this);
|
|
}
|
|
|
|
private:
|
|
|
|
typedef Matrix<Scalar, 1, Size, Options | RowMajor, 1, MaxSize> VectorType;
|
|
typedef typename NumTraits<Scalar>::Real RealScalar;
|
|
static void _compute(MatrixType& matA, CoeffVectorType& hCoeffs, VectorType& temp);
|
|
|
|
protected:
|
|
MatrixType m_matrix;
|
|
CoeffVectorType m_hCoeffs;
|
|
VectorType m_temp;
|
|
bool m_isInitialized;
|
|
};
|
|
|
|
/** \internal
|
|
* Performs a tridiagonal decomposition of \a matA in place.
|
|
*
|
|
* \param matA the input selfadjoint matrix
|
|
* \param hCoeffs returned Householder coefficients
|
|
*
|
|
* The result is written in the lower triangular part of \a matA.
|
|
*
|
|
* Implemented from Golub's "%Matrix Computations", algorithm 8.3.1.
|
|
*
|
|
* \sa packedMatrix()
|
|
*/
|
|
template<typename MatrixType>
|
|
void HessenbergDecomposition<MatrixType>::_compute(MatrixType& matA, CoeffVectorType& hCoeffs, VectorType& temp)
|
|
{
|
|
eigen_assert(matA.rows()==matA.cols());
|
|
Index n = matA.rows();
|
|
temp.resize(n);
|
|
for (Index i = 0; i<n-1; ++i)
|
|
{
|
|
// let's consider the vector v = i-th column starting at position i+1
|
|
Index remainingSize = n-i-1;
|
|
RealScalar beta;
|
|
Scalar h;
|
|
matA.col(i).tail(remainingSize).makeHouseholderInPlace(h, beta);
|
|
matA.col(i).coeffRef(i+1) = beta;
|
|
hCoeffs.coeffRef(i) = h;
|
|
|
|
// Apply similarity transformation to remaining columns,
|
|
// i.e., compute A = H A H'
|
|
|
|
// A = H A
|
|
matA.bottomRightCorner(remainingSize, remainingSize)
|
|
.applyHouseholderOnTheLeft(matA.col(i).tail(remainingSize-1), h, &temp.coeffRef(0));
|
|
|
|
// A = A H'
|
|
matA.rightCols(remainingSize)
|
|
.applyHouseholderOnTheRight(matA.col(i).tail(remainingSize-1).conjugate(), numext::conj(h), &temp.coeffRef(0));
|
|
}
|
|
}
|
|
|
|
namespace internal {
|
|
|
|
/** \eigenvalues_module \ingroup Eigenvalues_Module
|
|
*
|
|
*
|
|
* \brief Expression type for return value of HessenbergDecomposition::matrixH()
|
|
*
|
|
* \tparam MatrixType type of matrix in the Hessenberg decomposition
|
|
*
|
|
* Objects of this type represent the Hessenberg matrix in the Hessenberg
|
|
* decomposition of some matrix. The object holds a reference to the
|
|
* HessenbergDecomposition class until the it is assigned or evaluated for
|
|
* some other reason (the reference should remain valid during the life time
|
|
* of this object). This class is the return type of
|
|
* HessenbergDecomposition::matrixH(); there is probably no other use for this
|
|
* class.
|
|
*/
|
|
template<typename MatrixType> struct HessenbergDecompositionMatrixHReturnType
|
|
: public ReturnByValue<HessenbergDecompositionMatrixHReturnType<MatrixType> >
|
|
{
|
|
typedef typename MatrixType::Index Index;
|
|
public:
|
|
/** \brief Constructor.
|
|
*
|
|
* \param[in] hess Hessenberg decomposition
|
|
*/
|
|
HessenbergDecompositionMatrixHReturnType(const HessenbergDecomposition<MatrixType>& hess) : m_hess(hess) { }
|
|
|
|
/** \brief Hessenberg matrix in decomposition.
|
|
*
|
|
* \param[out] result Hessenberg matrix in decomposition \p hess which
|
|
* was passed to the constructor
|
|
*/
|
|
template <typename ResultType>
|
|
inline void evalTo(ResultType& result) const
|
|
{
|
|
result = m_hess.packedMatrix();
|
|
Index n = result.rows();
|
|
if (n>2)
|
|
result.bottomLeftCorner(n-2, n-2).template triangularView<Lower>().setZero();
|
|
}
|
|
|
|
Index rows() const { return m_hess.packedMatrix().rows(); }
|
|
Index cols() const { return m_hess.packedMatrix().cols(); }
|
|
|
|
protected:
|
|
const HessenbergDecomposition<MatrixType>& m_hess;
|
|
};
|
|
|
|
} // end namespace internal
|
|
|
|
} // end namespace Eigen
|
|
|
|
#endif // EIGEN_HESSENBERGDECOMPOSITION_H
|