377 lines
13 KiB
C++
377 lines
13 KiB
C++
// Ceres Solver - A fast non-linear least squares minimizer
|
|
// Copyright 2015 Google Inc. All rights reserved.
|
|
// http://ceres-solver.org/
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
// * Neither the name of Google Inc. nor the names of its contributors may be
|
|
// used to endorse or promote products derived from this software without
|
|
// specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
|
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
// POSSIBILITY OF SUCH DAMAGE.
|
|
//
|
|
// Author: sameeragarwal@google.com (Sameer Agarwal)
|
|
|
|
#include <map>
|
|
|
|
#include "ceres/ordered_groups.h"
|
|
#include "ceres/problem_impl.h"
|
|
#include "ceres/sized_cost_function.h"
|
|
#include "ceres/solver.h"
|
|
#include "ceres/trust_region_preprocessor.h"
|
|
#include "gtest/gtest.h"
|
|
|
|
namespace ceres {
|
|
namespace internal {
|
|
|
|
TEST(TrustRegionPreprocessor, ZeroProblem) {
|
|
ProblemImpl problem;
|
|
Solver::Options options;
|
|
TrustRegionPreprocessor preprocessor;
|
|
PreprocessedProblem pp;
|
|
EXPECT_TRUE(preprocessor.Preprocess(options, &problem, &pp));
|
|
}
|
|
|
|
TEST(TrustRegionPreprocessor, ProblemWithInvalidParameterBlock) {
|
|
ProblemImpl problem;
|
|
double x = std::numeric_limits<double>::quiet_NaN();
|
|
problem.AddParameterBlock(&x, 1);
|
|
Solver::Options options;
|
|
TrustRegionPreprocessor preprocessor;
|
|
PreprocessedProblem pp;
|
|
EXPECT_FALSE(preprocessor.Preprocess(options, &problem, &pp));
|
|
}
|
|
|
|
TEST(TrustRegionPreprocessor, ParameterBlockBoundsAreInvalid) {
|
|
ProblemImpl problem;
|
|
double x = 1.0;
|
|
problem.AddParameterBlock(&x, 1);
|
|
problem.SetParameterUpperBound(&x, 0, 1.0);
|
|
problem.SetParameterLowerBound(&x, 0, 2.0);
|
|
Solver::Options options;
|
|
TrustRegionPreprocessor preprocessor;
|
|
PreprocessedProblem pp;
|
|
EXPECT_FALSE(preprocessor.Preprocess(options, &problem, &pp));
|
|
}
|
|
|
|
TEST(TrustRegionPreprocessor, ParamterBlockIsInfeasible) {
|
|
ProblemImpl problem;
|
|
double x = 3.0;
|
|
problem.AddParameterBlock(&x, 1);
|
|
problem.SetParameterUpperBound(&x, 0, 1.0);
|
|
problem.SetParameterLowerBound(&x, 0, 2.0);
|
|
problem.SetParameterBlockConstant(&x);
|
|
Solver::Options options;
|
|
TrustRegionPreprocessor preprocessor;
|
|
PreprocessedProblem pp;
|
|
EXPECT_FALSE(preprocessor.Preprocess(options, &problem, &pp));
|
|
}
|
|
|
|
class FailingCostFunction : public SizedCostFunction<1, 1> {
|
|
public:
|
|
bool Evaluate(double const* const* parameters,
|
|
double* residuals,
|
|
double** jacobians) const {
|
|
return false;
|
|
}
|
|
};
|
|
|
|
TEST(TrustRegionPreprocessor, RemoveParameterBlocksFailed) {
|
|
ProblemImpl problem;
|
|
double x = 3.0;
|
|
problem.AddResidualBlock(new FailingCostFunction, NULL, &x);
|
|
problem.SetParameterBlockConstant(&x);
|
|
Solver::Options options;
|
|
TrustRegionPreprocessor preprocessor;
|
|
PreprocessedProblem pp;
|
|
EXPECT_FALSE(preprocessor.Preprocess(options, &problem, &pp));
|
|
}
|
|
|
|
TEST(TrustRegionPreprocessor, RemoveParameterBlocksSucceeds) {
|
|
ProblemImpl problem;
|
|
double x = 3.0;
|
|
problem.AddParameterBlock(&x, 1);
|
|
Solver::Options options;
|
|
TrustRegionPreprocessor preprocessor;
|
|
PreprocessedProblem pp;
|
|
EXPECT_TRUE(preprocessor.Preprocess(options, &problem, &pp));
|
|
}
|
|
|
|
template<int kNumResiduals, int N1 = 0, int N2 = 0, int N3 = 0>
|
|
class DummyCostFunction : public SizedCostFunction<kNumResiduals, N1, N2, N3> {
|
|
public:
|
|
bool Evaluate(double const* const* parameters,
|
|
double* residuals,
|
|
double** jacobians) const {
|
|
for (int i = 0; i < kNumResiduals; ++i) {
|
|
residuals[i] = kNumResiduals * kNumResiduals + i;
|
|
}
|
|
|
|
if (jacobians == NULL) {
|
|
return true;
|
|
}
|
|
|
|
if (jacobians[0] != NULL) {
|
|
MatrixRef j(jacobians[0], kNumResiduals, N1);
|
|
j.setOnes();
|
|
j *= kNumResiduals * N1;
|
|
}
|
|
|
|
if (N2 == 0) {
|
|
return true;
|
|
}
|
|
|
|
if (jacobians[1] != NULL) {
|
|
MatrixRef j(jacobians[1], kNumResiduals, N2);
|
|
j.setOnes();
|
|
j *= kNumResiduals * N2;
|
|
}
|
|
|
|
if (N3 == 0) {
|
|
return true;
|
|
}
|
|
|
|
if (jacobians[2] != NULL) {
|
|
MatrixRef j(jacobians[2], kNumResiduals, N3);
|
|
j.setOnes();
|
|
j *= kNumResiduals * N3;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
};
|
|
|
|
class LinearSolverAndEvaluatorCreationTest : public ::testing::Test {
|
|
public:
|
|
virtual void SetUp() {
|
|
x_ = 1.0;
|
|
y_ = 1.0;
|
|
z_ = 1.0;
|
|
problem_.AddResidualBlock(new DummyCostFunction<1, 1, 1>, NULL, &x_, &y_);
|
|
problem_.AddResidualBlock(new DummyCostFunction<1, 1, 1>, NULL, &y_, &z_);
|
|
}
|
|
|
|
void PreprocessForGivenLinearSolverAndVerify(
|
|
const LinearSolverType linear_solver_type) {
|
|
Solver::Options options;
|
|
options.linear_solver_type = linear_solver_type;
|
|
TrustRegionPreprocessor preprocessor;
|
|
PreprocessedProblem pp;
|
|
EXPECT_TRUE(preprocessor.Preprocess(options, &problem_, &pp));
|
|
EXPECT_EQ(pp.options.linear_solver_type, linear_solver_type);
|
|
EXPECT_EQ(pp.linear_solver_options.type, linear_solver_type);
|
|
EXPECT_EQ(pp.evaluator_options.linear_solver_type, linear_solver_type);
|
|
EXPECT_TRUE(pp.linear_solver.get() != NULL);
|
|
EXPECT_TRUE(pp.evaluator.get() != NULL);
|
|
}
|
|
|
|
protected:
|
|
ProblemImpl problem_;
|
|
double x_;
|
|
double y_;
|
|
double z_;
|
|
};
|
|
|
|
TEST_F(LinearSolverAndEvaluatorCreationTest, DenseQR) {
|
|
PreprocessForGivenLinearSolverAndVerify(DENSE_QR);
|
|
}
|
|
|
|
TEST_F(LinearSolverAndEvaluatorCreationTest, DenseNormalCholesky) {
|
|
PreprocessForGivenLinearSolverAndVerify(DENSE_NORMAL_CHOLESKY);
|
|
}
|
|
|
|
TEST_F(LinearSolverAndEvaluatorCreationTest, DenseSchur) {
|
|
PreprocessForGivenLinearSolverAndVerify(DENSE_SCHUR);
|
|
}
|
|
|
|
#if defined(CERES_USE_EIGEN_SPARSE) || \
|
|
!defined(CERES_NO_SUITESPARSE) || \
|
|
!defined(CERES_NO_CXSPARSE)
|
|
TEST_F(LinearSolverAndEvaluatorCreationTest, SparseNormalCholesky) {
|
|
PreprocessForGivenLinearSolverAndVerify(SPARSE_NORMAL_CHOLESKY);
|
|
}
|
|
#endif
|
|
|
|
#if defined(CERES_USE_EIGEN_SPARSE) || \
|
|
!defined(CERES_NO_SUITESPARSE) || \
|
|
!defined(CERES_NO_CXSPARSE)
|
|
TEST_F(LinearSolverAndEvaluatorCreationTest, SparseSchur) {
|
|
PreprocessForGivenLinearSolverAndVerify(SPARSE_SCHUR);
|
|
}
|
|
#endif
|
|
|
|
TEST_F(LinearSolverAndEvaluatorCreationTest, CGNR) {
|
|
PreprocessForGivenLinearSolverAndVerify(CGNR);
|
|
}
|
|
|
|
TEST_F(LinearSolverAndEvaluatorCreationTest, IterativeSchur) {
|
|
PreprocessForGivenLinearSolverAndVerify(ITERATIVE_SCHUR);
|
|
}
|
|
|
|
TEST_F(LinearSolverAndEvaluatorCreationTest, MinimizerIsAwareOfBounds) {
|
|
problem_.SetParameterLowerBound(&x_, 0, 0.0);
|
|
Solver::Options options;
|
|
TrustRegionPreprocessor preprocessor;
|
|
PreprocessedProblem pp;
|
|
EXPECT_TRUE(preprocessor.Preprocess(options, &problem_, &pp));
|
|
EXPECT_EQ(pp.options.linear_solver_type, options.linear_solver_type);
|
|
EXPECT_EQ(pp.linear_solver_options.type, options.linear_solver_type);
|
|
EXPECT_EQ(pp.evaluator_options.linear_solver_type,
|
|
options.linear_solver_type);
|
|
EXPECT_TRUE(pp.linear_solver.get() != NULL);
|
|
EXPECT_TRUE(pp.evaluator.get() != NULL);
|
|
EXPECT_TRUE(pp.minimizer_options.is_constrained);
|
|
}
|
|
|
|
TEST_F(LinearSolverAndEvaluatorCreationTest, SchurTypeSolverWithBadOrdering) {
|
|
Solver::Options options;
|
|
options.linear_solver_type = DENSE_SCHUR;
|
|
options.linear_solver_ordering.reset(new ParameterBlockOrdering);
|
|
options.linear_solver_ordering->AddElementToGroup(&x_, 0);
|
|
options.linear_solver_ordering->AddElementToGroup(&y_, 0);
|
|
options.linear_solver_ordering->AddElementToGroup(&z_, 1);
|
|
|
|
TrustRegionPreprocessor preprocessor;
|
|
PreprocessedProblem pp;
|
|
EXPECT_FALSE(preprocessor.Preprocess(options, &problem_, &pp));
|
|
}
|
|
|
|
TEST_F(LinearSolverAndEvaluatorCreationTest, SchurTypeSolverWithGoodOrdering) {
|
|
Solver::Options options;
|
|
options.linear_solver_type = DENSE_SCHUR;
|
|
options.linear_solver_ordering.reset(new ParameterBlockOrdering);
|
|
options.linear_solver_ordering->AddElementToGroup(&x_, 0);
|
|
options.linear_solver_ordering->AddElementToGroup(&z_, 0);
|
|
options.linear_solver_ordering->AddElementToGroup(&y_, 1);
|
|
|
|
TrustRegionPreprocessor preprocessor;
|
|
PreprocessedProblem pp;
|
|
EXPECT_TRUE(preprocessor.Preprocess(options, &problem_, &pp));
|
|
EXPECT_EQ(pp.options.linear_solver_type, DENSE_SCHUR);
|
|
EXPECT_EQ(pp.linear_solver_options.type, DENSE_SCHUR);
|
|
EXPECT_EQ(pp.evaluator_options.linear_solver_type, DENSE_SCHUR);
|
|
EXPECT_TRUE(pp.linear_solver.get() != NULL);
|
|
EXPECT_TRUE(pp.evaluator.get() != NULL);
|
|
}
|
|
|
|
TEST_F(LinearSolverAndEvaluatorCreationTest,
|
|
SchurTypeSolverWithEmptyFirstEliminationGroup) {
|
|
problem_.SetParameterBlockConstant(&x_);
|
|
problem_.SetParameterBlockConstant(&z_);
|
|
|
|
Solver::Options options;
|
|
options.linear_solver_type = DENSE_SCHUR;
|
|
options.linear_solver_ordering.reset(new ParameterBlockOrdering);
|
|
options.linear_solver_ordering->AddElementToGroup(&x_, 0);
|
|
options.linear_solver_ordering->AddElementToGroup(&z_, 0);
|
|
options.linear_solver_ordering->AddElementToGroup(&y_, 1);
|
|
|
|
TrustRegionPreprocessor preprocessor;
|
|
PreprocessedProblem pp;
|
|
EXPECT_TRUE(preprocessor.Preprocess(options, &problem_, &pp));
|
|
EXPECT_EQ(pp.options.linear_solver_type, DENSE_QR);
|
|
EXPECT_EQ(pp.linear_solver_options.type, DENSE_QR);
|
|
EXPECT_EQ(pp.evaluator_options.linear_solver_type, DENSE_QR);
|
|
EXPECT_TRUE(pp.linear_solver.get() != NULL);
|
|
EXPECT_TRUE(pp.evaluator.get() != NULL);
|
|
}
|
|
|
|
TEST_F(LinearSolverAndEvaluatorCreationTest,
|
|
SchurTypeSolverWithEmptySecondEliminationGroup) {
|
|
problem_.SetParameterBlockConstant(&y_);
|
|
|
|
Solver::Options options;
|
|
options.linear_solver_type = DENSE_SCHUR;
|
|
options.linear_solver_ordering.reset(new ParameterBlockOrdering);
|
|
options.linear_solver_ordering->AddElementToGroup(&x_, 0);
|
|
options.linear_solver_ordering->AddElementToGroup(&z_, 0);
|
|
options.linear_solver_ordering->AddElementToGroup(&y_, 1);
|
|
|
|
TrustRegionPreprocessor preprocessor;
|
|
PreprocessedProblem pp;
|
|
EXPECT_TRUE(preprocessor.Preprocess(options, &problem_, &pp));
|
|
EXPECT_EQ(pp.options.linear_solver_type, DENSE_SCHUR);
|
|
EXPECT_EQ(pp.linear_solver_options.type, DENSE_SCHUR);
|
|
EXPECT_EQ(pp.evaluator_options.linear_solver_type, DENSE_SCHUR);
|
|
EXPECT_TRUE(pp.linear_solver.get() != NULL);
|
|
EXPECT_TRUE(pp.evaluator.get() != NULL);
|
|
}
|
|
|
|
TEST(TrustRegionPreprocessorTest, InnerIterationsWithOneParameterBlock) {
|
|
ProblemImpl problem;
|
|
double x = 1.0;
|
|
problem.AddResidualBlock(new DummyCostFunction<1, 1>, NULL, &x);
|
|
|
|
Solver::Options options;
|
|
options.use_inner_iterations = true;
|
|
|
|
TrustRegionPreprocessor preprocessor;
|
|
PreprocessedProblem pp;
|
|
EXPECT_TRUE(preprocessor.Preprocess(options, &problem, &pp));
|
|
EXPECT_TRUE(pp.linear_solver.get() != NULL);
|
|
EXPECT_TRUE(pp.evaluator.get() != NULL);
|
|
EXPECT_TRUE(pp.inner_iteration_minimizer.get() == NULL);
|
|
}
|
|
|
|
TEST_F(LinearSolverAndEvaluatorCreationTest,
|
|
InnerIterationsWithTwoParameterBlocks) {
|
|
Solver::Options options;
|
|
options.use_inner_iterations = true;
|
|
|
|
TrustRegionPreprocessor preprocessor;
|
|
PreprocessedProblem pp;
|
|
EXPECT_TRUE(preprocessor.Preprocess(options, &problem_, &pp));
|
|
EXPECT_TRUE(pp.linear_solver.get() != NULL);
|
|
EXPECT_TRUE(pp.evaluator.get() != NULL);
|
|
EXPECT_TRUE(pp.inner_iteration_minimizer.get() != NULL);
|
|
}
|
|
|
|
TEST_F(LinearSolverAndEvaluatorCreationTest,
|
|
InvalidInnerIterationsOrdering) {
|
|
Solver::Options options;
|
|
options.use_inner_iterations = true;
|
|
options.inner_iteration_ordering.reset(new ParameterBlockOrdering);
|
|
options.inner_iteration_ordering->AddElementToGroup(&x_, 0);
|
|
options.inner_iteration_ordering->AddElementToGroup(&z_, 0);
|
|
options.inner_iteration_ordering->AddElementToGroup(&y_, 0);
|
|
|
|
TrustRegionPreprocessor preprocessor;
|
|
PreprocessedProblem pp;
|
|
EXPECT_FALSE(preprocessor.Preprocess(options, &problem_, &pp));
|
|
}
|
|
|
|
TEST_F(LinearSolverAndEvaluatorCreationTest, ValidInnerIterationsOrdering) {
|
|
Solver::Options options;
|
|
options.use_inner_iterations = true;
|
|
options.inner_iteration_ordering.reset(new ParameterBlockOrdering);
|
|
options.inner_iteration_ordering->AddElementToGroup(&x_, 0);
|
|
options.inner_iteration_ordering->AddElementToGroup(&z_, 0);
|
|
options.inner_iteration_ordering->AddElementToGroup(&y_, 1);
|
|
|
|
TrustRegionPreprocessor preprocessor;
|
|
PreprocessedProblem pp;
|
|
EXPECT_TRUE(preprocessor.Preprocess(options, &problem_, &pp));
|
|
EXPECT_TRUE(pp.linear_solver.get() != NULL);
|
|
EXPECT_TRUE(pp.evaluator.get() != NULL);
|
|
EXPECT_TRUE(pp.inner_iteration_minimizer.get() != NULL);
|
|
}
|
|
|
|
} // namespace internal
|
|
} // namespace ceres
|