Complete rewrite to properly handle linescan image sequences: - Stitches linescan images horizontally into wide panorama - Creates scrolling video that pans left-to-right - Configurable scroll speed based on capture rate (750 lines/sec) - Output saved one folder up from image source - Uses Pillow for image stitching, ffmpeg for video creation Features: - --scroll-speed: multiplier for playback speed (1.0 = real-time) - --lines-per-second: linescan capture rate (default: 750) - --max-frames: limit frames for testing - --fps: output video framerate (default: 30) - --width: viewport width (default: 1920) - Automatic cleanup of temporary stitched image Example usage: # Real-time playback uv run scripts\append_signals.py results\20251122\bumpy-filter # 2x speed uv run scripts\append_signals.py results\20251122\bumpy-filter --scroll-speed 2.0 # Test with 10 frames uv run scripts\append_signals.py results\20251122\bumpy-filter --max-frames 10
321 lines
9.6 KiB
Python
321 lines
9.6 KiB
Python
#!/usr/bin/env -S uv run
|
|
# /// script
|
|
# requires-python = ">=3.10"
|
|
# dependencies = [
|
|
# "pillow",
|
|
# ]
|
|
# ///
|
|
|
|
"""
|
|
Create scrolling panorama videos from linescan image sequences.
|
|
|
|
This script stitches linescan images horizontally into a wide panorama,
|
|
then creates a scrolling video that pans left-to-right across the stitched image.
|
|
The scroll speed is calibrated to the linescan capture rate (750 lines/second by default).
|
|
"""
|
|
|
|
import argparse
|
|
import subprocess
|
|
import sys
|
|
import time
|
|
from pathlib import Path
|
|
from typing import List
|
|
from PIL import Image
|
|
|
|
|
|
def find_frames(directory: Path, pattern: str = "*.jpeg") -> List[Path]:
|
|
"""Find all frame files matching the pattern, sorted by name."""
|
|
frames = sorted(directory.glob(pattern))
|
|
if not frames:
|
|
frames = sorted(directory.glob("*.jpg"))
|
|
if not frames:
|
|
frames = sorted(directory.glob("*.png"))
|
|
return frames
|
|
|
|
|
|
def stitch_images_horizontally(
|
|
frames: List[Path],
|
|
output_file: Path,
|
|
max_frames: int = None
|
|
) -> tuple[int, int]:
|
|
"""
|
|
Stitch images horizontally into a single wide image.
|
|
Returns (width, height) of stitched image.
|
|
"""
|
|
if max_frames is not None and max_frames > 0:
|
|
frames = frames[:max_frames]
|
|
|
|
print(f"Loading {len(frames)} images for stitching...")
|
|
|
|
# Load first image to get dimensions
|
|
first_img = Image.open(frames[0])
|
|
img_width, img_height = first_img.size
|
|
|
|
# Calculate total width
|
|
total_width = img_width * len(frames)
|
|
|
|
print(f"Creating stitched image: {total_width}x{img_height} pixels")
|
|
print(f" Individual frame size: {img_width}x{img_height}")
|
|
print(f" Total frames: {len(frames)}")
|
|
|
|
# Create large canvas
|
|
stitched = Image.new('RGB', (total_width, img_height))
|
|
|
|
# Paste images
|
|
x_offset = 0
|
|
for i, frame_path in enumerate(frames):
|
|
if i % 50 == 0:
|
|
print(f" Stitching frame {i+1}/{len(frames)}...")
|
|
img = Image.open(frame_path)
|
|
stitched.paste(img, (x_offset, 0))
|
|
x_offset += img_width
|
|
|
|
print(f"Saving stitched image to {output_file}...")
|
|
stitched.save(output_file, quality=95)
|
|
|
|
return total_width, img_height
|
|
|
|
|
|
def create_scrolling_video(
|
|
stitched_image: Path,
|
|
output_file: Path,
|
|
total_width: int,
|
|
height: int,
|
|
output_width: int = 1920,
|
|
scroll_speed: float = 750.0,
|
|
fps: int = 30,
|
|
crf: int = 18,
|
|
lines_per_second: float = 750.0
|
|
) -> None:
|
|
"""
|
|
Create scrolling video from stitched image.
|
|
|
|
Args:
|
|
stitched_image: Path to stitched horizontal image
|
|
output_file: Output video file
|
|
total_width: Total width of stitched image
|
|
height: Height of image
|
|
output_width: Width of output video viewport
|
|
scroll_speed: Scroll speed multiplier (1.0 = real-time @ 750 lines/sec)
|
|
fps: Output video framerate
|
|
crf: Quality (lower = better)
|
|
lines_per_second: Linescan capture rate (pixels per second)
|
|
"""
|
|
# Calculate scroll parameters
|
|
# At scroll_speed=1.0, we scroll at the actual capture rate
|
|
pixels_per_second = lines_per_second * scroll_speed
|
|
pixels_per_frame = pixels_per_second / fps
|
|
|
|
# Calculate video duration
|
|
scrollable_width = total_width - output_width
|
|
duration = scrollable_width / pixels_per_second
|
|
total_frames = int(duration * fps)
|
|
|
|
print(f"\nScrolling video parameters:")
|
|
print(f" Output viewport: {output_width}x{height}")
|
|
print(f" Scroll speed: {scroll_speed}x real-time ({pixels_per_second:.1f} pixels/sec)")
|
|
print(f" Pixels per frame: {pixels_per_frame:.2f}")
|
|
print(f" Video duration: {duration:.2f} seconds")
|
|
print(f" Total frames: {total_frames}")
|
|
print(f" Output FPS: {fps}")
|
|
|
|
# FFmpeg crop filter with horizontal scrolling
|
|
# crop=w:h:x:y where x moves from 0 to (total_width - output_width)
|
|
# The 't' variable represents time in seconds
|
|
crop_expr = f"crop={output_width}:{height}:min({pixels_per_second}*t\\,{total_width-output_width}):0"
|
|
|
|
cmd = [
|
|
"ffmpeg",
|
|
"-y",
|
|
"-loop", "1",
|
|
"-i", str(stitched_image),
|
|
"-vf", crop_expr,
|
|
"-t", str(duration),
|
|
"-r", str(fps),
|
|
"-c:v", "libx264",
|
|
"-crf", str(crf),
|
|
"-pix_fmt", "yuv420p",
|
|
"-movflags", "+faststart",
|
|
str(output_file)
|
|
]
|
|
|
|
print(f"\nRunning ffmpeg...")
|
|
print(f"Command: {' '.join(cmd)}\n")
|
|
|
|
try:
|
|
subprocess.run(cmd, check=True)
|
|
print(f"\n✓ Scrolling video created successfully: {output_file}")
|
|
|
|
# Show file size
|
|
size_mb = output_file.stat().st_size / (1024 * 1024)
|
|
print(f" File size: {size_mb:.2f} MB")
|
|
print(f" Duration: {duration:.2f} seconds")
|
|
|
|
except subprocess.CalledProcessError as e:
|
|
print(f"Error: ffmpeg command failed with return code {e.returncode}")
|
|
sys.exit(1)
|
|
except FileNotFoundError:
|
|
print("Error: ffmpeg not found. Please install ffmpeg and ensure it's in your PATH.")
|
|
sys.exit(1)
|
|
|
|
|
|
def main():
|
|
parser = argparse.ArgumentParser(
|
|
description="Stitch linescan images horizontally and create scrolling video",
|
|
formatter_class=argparse.RawDescriptionHelpFormatter,
|
|
epilog="""
|
|
Examples:
|
|
# Real-time playback (1.0x speed, 750 lines/second)
|
|
python append_signals.py results/20251122/bumpy-filter
|
|
|
|
# Slow motion (0.5x speed)
|
|
python append_signals.py results/20251122/bumpy-filter --scroll-speed 0.5
|
|
|
|
# Fast playback (2x speed)
|
|
python append_signals.py results/20251122/bumpy-filter --scroll-speed 2.0
|
|
|
|
# Process only first 100 frames
|
|
python append_signals.py results/20251122/bumpy-filter --max-frames 100
|
|
|
|
# Higher FPS for smoother scrolling
|
|
python append_signals.py results/20251122/bumpy-filter --fps 60
|
|
|
|
# Custom output width (4K)
|
|
python append_signals.py results/20251122/bumpy-filter --width 3840
|
|
"""
|
|
)
|
|
|
|
parser.add_argument(
|
|
"input_dir",
|
|
type=Path,
|
|
help="Directory containing the linescan frame sequence"
|
|
)
|
|
|
|
parser.add_argument(
|
|
"-o", "--output",
|
|
type=Path,
|
|
help="Output video file (default: {folder_name}_{timestamp}.mp4 in input dir)"
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--scroll-speed",
|
|
type=float,
|
|
default=1.0,
|
|
help="Scroll speed multiplier (1.0 = real-time at 750 lines/sec, default: 1.0)"
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--lines-per-second",
|
|
type=float,
|
|
default=750.0,
|
|
help="Linescan capture rate in lines/pixels per second (default: 750)"
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--fps",
|
|
type=int,
|
|
default=30,
|
|
help="Output video framerate (default: 30)"
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--width",
|
|
type=int,
|
|
default=1920,
|
|
help="Output video viewport width in pixels (default: 1920)"
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--crf",
|
|
type=int,
|
|
default=18,
|
|
help="Constant Rate Factor for quality, lower=better (default: 18, range: 0-51)"
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--pattern",
|
|
type=str,
|
|
default="*.jpeg",
|
|
help="File pattern to match frames (default: *.jpeg)"
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--max-frames",
|
|
type=int,
|
|
default=None,
|
|
help="Maximum number of frames to process (default: all frames)"
|
|
)
|
|
|
|
args = parser.parse_args()
|
|
|
|
# Validate input directory
|
|
if not args.input_dir.exists():
|
|
print(f"Error: Input directory does not exist: {args.input_dir}")
|
|
sys.exit(1)
|
|
|
|
if not args.input_dir.is_dir():
|
|
print(f"Error: Input path is not a directory: {args.input_dir}")
|
|
sys.exit(1)
|
|
|
|
# Find frames
|
|
frames = find_frames(args.input_dir, args.pattern)
|
|
|
|
if not frames:
|
|
print(f"Error: No frames found in {args.input_dir} matching pattern {args.pattern}")
|
|
sys.exit(1)
|
|
|
|
total_frames = len(frames)
|
|
if args.max_frames is not None and args.max_frames > 0:
|
|
frames = frames[:args.max_frames]
|
|
print(f"Found {total_frames} frames, processing first {len(frames)} frames")
|
|
else:
|
|
print(f"Found {len(frames)} frames in {args.input_dir}")
|
|
|
|
# Set output file (one folder up from input directory)
|
|
if args.output is None:
|
|
unix_time = int(time.time())
|
|
folder_name = args.input_dir.name
|
|
output_filename = f"{folder_name}_scroll_{unix_time}.mp4"
|
|
output_file = args.input_dir.parent / output_filename
|
|
else:
|
|
output_file = args.output
|
|
|
|
# Validate CRF range
|
|
if not 0 <= args.crf <= 51:
|
|
print("Error: CRF must be between 0 and 51")
|
|
sys.exit(1)
|
|
|
|
# Create temporary stitched image
|
|
stitched_filename = f"stitched_temp_{int(time.time())}.jpg"
|
|
stitched_path = args.input_dir / stitched_filename
|
|
|
|
try:
|
|
# Stitch images
|
|
total_width, img_height = stitch_images_horizontally(
|
|
frames=frames,
|
|
output_file=stitched_path,
|
|
max_frames=args.max_frames
|
|
)
|
|
|
|
# Create scrolling video
|
|
create_scrolling_video(
|
|
stitched_image=stitched_path,
|
|
output_file=output_file,
|
|
total_width=total_width,
|
|
height=img_height,
|
|
output_width=args.width,
|
|
scroll_speed=args.scroll_speed,
|
|
fps=args.fps,
|
|
crf=args.crf,
|
|
lines_per_second=args.lines_per_second
|
|
)
|
|
|
|
finally:
|
|
# Clean up temporary stitched image
|
|
if stitched_path.exists():
|
|
print(f"\nCleaning up temporary file: {stitched_filename}")
|
|
stitched_path.unlink()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main() |