use crate::offline::{Header, HDR_SIZE}; use bracket_color::prelude::*; use clap::Parser; use dotenv::dotenv; use std::time::SystemTime; use std::{ io::Write, sync::{Arc, Mutex}, thread::spawn, }; use v4l::video::Output; #[derive(Parser, Debug)] #[command(version, about, long_about = None)] struct Args { #[arg(short, long, default_value_t = false)] temperature: bool, #[arg(short, long, default_value = "/dev/video0")] device: String, #[arg(short, long)] red_cutoff: Option, } fn pixel_to_celcius(x: u16) -> u16 { let x: f64 = x.into(); let x = x / 256.0; let t = (-1.665884e-08) * x.powf(4.) + (1.347094e-05) * x.powf(3.) + (-4.396264e-03) * x.powf(2.) + (9.506939e-01) * x + (-6.353247e+01); (t * 256.0) as u16 } /// https://en.wikipedia.org/wiki/HSL_and_HSV /// convert to the expected dynamic range first. We insert values in [0..256) /// h in [0, 360] degrees /// s in [0, 1] /// v in [0, 1] fn once_upon_a_time_hsv2rgb(h: u8, s: u8, v: u8) -> (u8, u8, u8) { let h = (h as f64) / 256.0 * 360.0; let s = (s as f64) / 256.0; let v = (v as f64) / 256.0; (0, 0, 0) } fn rgb_to_u8s(rgb: &RGB) -> (u8, u8, u8) { ( (rgb.r * 256.) as u8, (rgb.g * 256.) as u8, (rgb.b * 256.) as u8, ) } pub(crate) struct Streamer { pub(crate) min_cutoff: f64, pub(crate) max_cutoff: f64, pub(crate) freq_hz: f64, } pub(crate) fn initialize() -> Arc> { let args = Args::parse(); Arc::new(Mutex::new(Streamer { min_cutoff: args.red_cutoff.unwrap_or(26.), max_cutoff: args.red_cutoff.unwrap_or(26.) + 10.0, freq_hz: 1.0, })) } fn main(streamer: Arc>) -> anyhow::Result<()> { dotenv().ok(); let args = Args::parse(); let device = match std::env::var("THERMALCAM_IFACE=enp1s0f0") { Ok(d) => { let device = pcap::Device::list() .expect("device list failed") .into_iter() .find(|x| x.name == d) .expect(&format!("could not find device {}", d)); device } Err(_) => pcap::Device::lookup() .expect("device lookup failed") .expect("no device available"), }; // get the default Device println!("Using device {}", device.name); let output = args.device; println!("Using output v4l2loopback device {}", output); const WIDTH: usize = 288; const HEIGHT: usize = 384; println!("reading cutoff"); let start = SystemTime::now() .duration_since(SystemTime::UNIX_EPOCH) .unwrap() .as_secs_f64(); let greyscale = !args.temperature; let fourcc_repr = if greyscale { [ b'Y', // | 0b10000000 b'1', b'6', b' ', // Note: not using b' ' | 0x80, (V4L2_PIX_FMT_Y16_BE) // because VID_S_FMT ioctl returns EINVAL, so just swap the bytes here ] } else { // RGB32 is 4 bytes R, G, B, A [b'R', b'G', b'B', b'4'] }; println!("using four cc {:?}", fourcc_repr); let bytes_per_pixel = if greyscale { 2 } else { 4 }; let fourcc = v4l::format::FourCC { repr: fourcc_repr }; let mut out = v4l::Device::with_path(output)?; // To find the fourcc code, use v4l2-ctl --list-formats-out /dev/video0 // (or read the source :) // flip axes let format = v4l::Format::new(HEIGHT as u32, WIDTH as u32, fourcc); Output::set_format(&out, &format)?; // Setup Capture let mut cap = pcap::Capture::from_device(device) .unwrap() .immediate_mode(true) .open() .unwrap(); // get a packet and print its bytes const PACKET_LEN: usize = 6972; // input is grayscale 16 bits per pixel const FRAME_LEN: usize = WIDTH * HEIGHT * 2; let mut frame = [0u8; FRAME_LEN]; let mut len = 0; let output_frame_len = WIDTH * HEIGHT * bytes_per_pixel; let mut swapped_vec = vec![0u8; output_frame_len]; let swapped = &mut swapped_vec; while let Ok(p) = cap.next_packet() { let data = p.data; if data.len() != PACKET_LEN { continue; } let data = &data[0x2a..]; let header = match Header::read(data) { Ok(header) => header, Err(_) => continue, }; let data = &data[HDR_SIZE..]; if (header.part == 0 && len > 0) // do not write out of bounds - would panic, instead just skip || (data.len() + len > FRAME_LEN) { if len == FRAME_LEN { // read once per frame, can make it lower if need be let state = streamer.lock().unwrap(); let mid = (state.min_cutoff + state.max_cutoff) / 2.0; let range = state.max_cutoff - state.min_cutoff; let hz = state.freq_hz; let now = SystemTime::now() .duration_since(SystemTime::UNIX_EPOCH) .unwrap() .as_secs_f64(); let dt = now - start; let cutoff = mid + f64::sin(dt * hz) * 0.5 * range; // swap the bytes, we are using LE, not BE, 16 bit grayscale // possibly limitation of current v4l2loopback or v4l rust wrapper or libv4l2 for i in 0..FRAME_LEN / 2 { let x = i % WIDTH; let y = (i / WIDTH) % HEIGHT; let mut pixel = u16::from_be_bytes([frame[i * 2], frame[i * 2 + 1]]); if greyscale { if args.temperature { pixel = pixel_to_celcius(pixel); } let pixel_swapped = pixel.to_le_bytes(); let out_i = ((HEIGHT - 1 - y) + (WIDTH - 1 - x) * HEIGHT) * 2; swapped[out_i..out_i + 2].copy_from_slice(&pixel_swapped); } else { pixel = pixel_to_celcius(pixel); let (r, g, b) = if pixel > (256.0 * cutoff) as u16 { let p = pixel - (256.0 * cutoff) as u16; let rgb = HSV::from_f32(0.0, (p as f32) / 256.0, 0.0).to_rgb(); rgb_to_u8s(&rgb) } else { let rgb = HSV::from_f32(pixel as f32 / 65536.0, 0.0, pixel as f32 / 65536.0) .to_rgb(); rgb_to_u8s(&rgb) }; let out_i = ((HEIGHT - 1 - y) + (WIDTH - 1 - x) * HEIGHT) * 4; swapped[out_i..out_i + 4].copy_from_slice(&[0, r, g, b]); } } out.write_all(&swapped[..])?; } len = 0; } frame[len..len + data.len()].copy_from_slice(data); len += data.len(); } Ok(()) } pub(crate) fn start_stream_thread(streamer: Arc>) { spawn(move || { if let Err(e) = main(streamer) { println!("oops: {:?}", e); } }); }