- Add default yrow=8 when no mode specified - Make --output optional, auto-generate to results/ folder - Add 4-char UUID and threshold to auto-generated filenames - Auto-append .jpg extension when no extension provided - Rotate row mode output 90° clockwise for proper orientation - Move debug mode outputs to results/ folder - Add uuid module for unique filename generation Example outputs: - results/video_a3f2_t0_01.jpg (auto-generated) - results/video_7c91_t0_05_changes.png (debug mode)
450 lines
15 KiB
Python
450 lines
15 KiB
Python
#!/usr/bin/env python3
|
|
"""
|
|
Strip Photography / Slit Photography Implementation
|
|
|
|
A digital implementation of strip photography that captures a two-dimensional
|
|
image as a sequence of one-dimensional images over time.
|
|
"""
|
|
|
|
import argparse
|
|
import sys
|
|
import cv2
|
|
import numpy as np
|
|
import matplotlib.pyplot as plt
|
|
from pathlib import Path
|
|
import uuid
|
|
|
|
|
|
def calculate_line_difference(line1, line2):
|
|
"""
|
|
Calculate the difference between two lines (column or row).
|
|
|
|
Args:
|
|
line1, line2: numpy arrays representing lines from consecutive frames
|
|
|
|
Returns:
|
|
float: normalized difference value between 0 and 1
|
|
"""
|
|
# Convert to float for calculation
|
|
diff = np.abs(line1.astype(np.float32) - line2.astype(np.float32))
|
|
# Calculate mean difference across all channels
|
|
mean_diff = np.mean(diff)
|
|
# Normalize to 0-255 range
|
|
return mean_diff / 255.0
|
|
|
|
|
|
def generate_change_graph(changes, output_path, threshold=None):
|
|
"""
|
|
Generate a graph showing change values over time.
|
|
|
|
Args:
|
|
changes: List of change values
|
|
output_path: Path for output graph image
|
|
threshold: Optional threshold line to display
|
|
"""
|
|
plt.figure(figsize=(12, 6))
|
|
plt.plot(changes, linewidth=1, alpha=0.7)
|
|
plt.xlabel('Frame Number')
|
|
plt.ylabel('Change Value (0-1)')
|
|
plt.title('Line Change Detection Over Time')
|
|
plt.grid(True, alpha=0.3)
|
|
|
|
if threshold is not None:
|
|
plt.axhline(y=threshold, color='r', linestyle='--',
|
|
label=f'Threshold: {threshold:.3f}')
|
|
plt.legend()
|
|
|
|
# Add statistics
|
|
mean_change = np.mean(changes)
|
|
max_change = np.max(changes)
|
|
std_change = np.std(changes)
|
|
|
|
stats_text = f'Mean: {mean_change:.3f}\nMax: {max_change:.3f}\nStd: {std_change:.3f}'
|
|
plt.text(0.02, 0.98, stats_text, transform=plt.gca().transAxes,
|
|
verticalalignment='top', bbox=dict(boxstyle='round', facecolor='wheat', alpha=0.8))
|
|
|
|
plt.tight_layout()
|
|
plt.savefig(output_path, dpi=150, bbox_inches='tight')
|
|
plt.close()
|
|
print(f"Change graph saved to: {output_path}")
|
|
|
|
|
|
def analyze_changes_only(video_path, x_column=None, y_row=None, debug_output=None):
|
|
"""
|
|
Analyze changes in video without generating strip image.
|
|
Used for debug mode to generate change threshold graphs.
|
|
|
|
Args:
|
|
video_path: Path to input video file
|
|
x_column: X-coordinate of column to analyze (if column mode)
|
|
y_row: Y-coordinate of row to analyze (if row mode)
|
|
debug_output: Base path for debug outputs
|
|
|
|
Returns:
|
|
List of change values
|
|
"""
|
|
cap = cv2.VideoCapture(str(video_path))
|
|
|
|
if not cap.isOpened():
|
|
raise ValueError(f"Could not open video file: {video_path}")
|
|
|
|
# Get video properties
|
|
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
|
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
|
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
|
|
|
if x_column is not None:
|
|
if x_column >= frame_width:
|
|
raise ValueError(f"Column {x_column} is outside video width ({frame_width})")
|
|
print(f"Analyzing column {x_column} from {frame_width}x{frame_height} frames")
|
|
else:
|
|
if y_row >= frame_height:
|
|
raise ValueError(f"Row {y_row} is outside video height ({frame_height})")
|
|
print(f"Analyzing row {y_row} from {frame_width}x{frame_height} frames")
|
|
|
|
print(f"Processing {total_frames} frames for change analysis...")
|
|
|
|
changes = []
|
|
previous_line = None
|
|
|
|
frame_idx = 0
|
|
while True:
|
|
ret, frame = cap.read()
|
|
if not ret:
|
|
break
|
|
|
|
# Extract current line (column or row)
|
|
if x_column is not None:
|
|
current_line = frame[:, x_column, :].copy()
|
|
else:
|
|
current_line = frame[y_row, :, :].copy()
|
|
|
|
# Calculate change from previous frame
|
|
if previous_line is not None:
|
|
change = calculate_line_difference(current_line, previous_line)
|
|
changes.append(change)
|
|
|
|
previous_line = current_line
|
|
frame_idx += 1
|
|
|
|
if frame_idx % 100 == 0:
|
|
print(f"Analyzed {frame_idx}/{total_frames} frames")
|
|
|
|
cap.release()
|
|
|
|
if debug_output:
|
|
# Generate change graph (debug_output is now a Path object)
|
|
graph_path = debug_output.parent / f"{debug_output.stem}_changes.png"
|
|
generate_change_graph(changes, graph_path)
|
|
|
|
# Generate statistics
|
|
if changes:
|
|
print(f"\nChange Analysis Statistics:")
|
|
print(f"Total frames analyzed: {len(changes)}")
|
|
print(f"Mean change: {np.mean(changes):.4f}")
|
|
print(f"Max change: {np.max(changes):.4f}")
|
|
print(f"Min change: {np.min(changes):.4f}")
|
|
print(f"Std deviation: {np.std(changes):.4f}")
|
|
|
|
# Suggest thresholds
|
|
percentiles = [50, 75, 90, 95, 99]
|
|
print(f"\nSuggested threshold values:")
|
|
for p in percentiles:
|
|
thresh = np.percentile(changes, p)
|
|
frames_above = np.sum(np.array(changes) >= thresh)
|
|
compression = (len(changes) - frames_above) / len(changes) * 100
|
|
print(f" {p}th percentile: {thresh:.4f} (keeps {frames_above} frames, {compression:.1f}% compression)")
|
|
|
|
return changes
|
|
|
|
|
|
def extract_column_strip(video_path, x_column, output_path, change_threshold=0.005):
|
|
"""
|
|
Extract vertical strip at x_column from each frame of the video.
|
|
Only include frames where the change exceeds the threshold.
|
|
|
|
Args:
|
|
video_path: Path to input video file
|
|
x_column: X-coordinate of the column to extract
|
|
output_path: Path for output image
|
|
change_threshold: Minimum change threshold (0-1) to include frame
|
|
"""
|
|
cap = cv2.VideoCapture(str(video_path))
|
|
|
|
if not cap.isOpened():
|
|
raise ValueError(f"Could not open video file: {video_path}")
|
|
|
|
# Get video properties
|
|
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
|
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
|
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
|
|
|
if x_column >= frame_width:
|
|
raise ValueError(f"Column {x_column} is outside video width ({frame_width})")
|
|
|
|
print(f"Processing {total_frames} frames...")
|
|
print(f"Extracting column {x_column} from {frame_width}x{frame_height} frames")
|
|
print(f"Change threshold: {change_threshold}")
|
|
|
|
# Collect significant columns
|
|
significant_columns = []
|
|
previous_column = None
|
|
included_frames = 0
|
|
skipped_frames = 0
|
|
|
|
frame_idx = 0
|
|
while True:
|
|
ret, frame = cap.read()
|
|
if not ret:
|
|
break
|
|
|
|
# Extract current column
|
|
current_column = frame[:, x_column, :].copy()
|
|
|
|
# Check if this is the first frame or if change is significant
|
|
include_frame = False
|
|
if previous_column is None:
|
|
include_frame = True # Always include first frame
|
|
else:
|
|
change = calculate_line_difference(current_column, previous_column)
|
|
if change >= change_threshold:
|
|
include_frame = True
|
|
|
|
if include_frame:
|
|
significant_columns.append(current_column)
|
|
previous_column = current_column
|
|
included_frames += 1
|
|
else:
|
|
skipped_frames += 1
|
|
|
|
frame_idx += 1
|
|
if frame_idx % 100 == 0:
|
|
print(f"Processed {frame_idx}/{total_frames} frames")
|
|
|
|
cap.release()
|
|
|
|
if not significant_columns:
|
|
raise ValueError("No significant changes detected. Try lowering the threshold.")
|
|
|
|
# Convert list to numpy array
|
|
strip_image = np.stack(significant_columns, axis=1)
|
|
|
|
print(f"Original frames: {total_frames}")
|
|
print(f"Included frames: {included_frames}")
|
|
print(f"Skipped frames: {skipped_frames}")
|
|
print(f"Compression ratio: {skipped_frames/total_frames:.1%}")
|
|
print(f"Output dimensions: {strip_image.shape}")
|
|
print(f"Saving to: {output_path}")
|
|
|
|
# Save the strip image
|
|
cv2.imwrite(str(output_path), strip_image)
|
|
|
|
|
|
def extract_row_strip(video_path, y_row, output_path, change_threshold=0.01):
|
|
"""
|
|
Extract horizontal strip at y_row from each frame of the video.
|
|
Only include frames where the change exceeds the threshold.
|
|
|
|
Args:
|
|
video_path: Path to input video file
|
|
y_row: Y-coordinate of the row to extract
|
|
output_path: Path for output image
|
|
change_threshold: Minimum change threshold (0-1) to include frame
|
|
"""
|
|
cap = cv2.VideoCapture(str(video_path))
|
|
|
|
if not cap.isOpened():
|
|
raise ValueError(f"Could not open video file: {video_path}")
|
|
|
|
# Get video properties
|
|
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
|
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
|
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
|
|
|
if y_row >= frame_height:
|
|
raise ValueError(f"Row {y_row} is outside video height ({frame_height})")
|
|
|
|
print(f"Processing {total_frames} frames...")
|
|
print(f"Extracting row {y_row} from {frame_width}x{frame_height} frames")
|
|
print(f"Change threshold: {change_threshold}")
|
|
|
|
# Collect significant rows
|
|
significant_rows = []
|
|
previous_row = None
|
|
included_frames = 0
|
|
skipped_frames = 0
|
|
|
|
frame_idx = 0
|
|
while True:
|
|
ret, frame = cap.read()
|
|
if not ret:
|
|
break
|
|
|
|
# Extract current row
|
|
current_row = frame[y_row, :, :].copy()
|
|
|
|
# Check if this is the first frame or if change is significant
|
|
include_frame = False
|
|
if previous_row is None:
|
|
include_frame = True # Always include first frame
|
|
else:
|
|
change = calculate_line_difference(current_row, previous_row)
|
|
if change >= change_threshold:
|
|
include_frame = True
|
|
|
|
if include_frame:
|
|
significant_rows.append(current_row)
|
|
previous_row = current_row
|
|
included_frames += 1
|
|
else:
|
|
skipped_frames += 1
|
|
|
|
frame_idx += 1
|
|
if frame_idx % 100 == 0:
|
|
print(f"Processed {frame_idx}/{total_frames} frames")
|
|
|
|
cap.release()
|
|
|
|
if not significant_rows:
|
|
raise ValueError("No significant changes detected. Try lowering the threshold.")
|
|
|
|
# Convert list to numpy array
|
|
strip_image = np.stack(significant_rows, axis=0)
|
|
|
|
# Rotate clockwise 90 degrees for row mode
|
|
strip_image = cv2.rotate(strip_image, cv2.ROTATE_90_CLOCKWISE)
|
|
|
|
print(f"Original frames: {total_frames}")
|
|
print(f"Included frames: {included_frames}")
|
|
print(f"Skipped frames: {skipped_frames}")
|
|
print(f"Compression ratio: {skipped_frames/total_frames:.1%}")
|
|
print(f"Output dimensions: {strip_image.shape} (rotated 90° CW)")
|
|
print(f"Saving to: {output_path}")
|
|
|
|
# Save the strip image
|
|
cv2.imwrite(str(output_path), strip_image)
|
|
|
|
|
|
def main():
|
|
"""Main entry point for the strip photography tool."""
|
|
parser = argparse.ArgumentParser(
|
|
description="Extract strip photography effects from video files"
|
|
)
|
|
|
|
parser.add_argument(
|
|
"video_file",
|
|
help="Input video file path"
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--xcolumn",
|
|
type=int,
|
|
help="Extract vertical line at x-coordinate (column mode)"
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--yrow",
|
|
type=int,
|
|
help="Extract horizontal line at y-coordinate (row mode, default: 8)"
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--output",
|
|
help="Output image file path (default: results/<input_name>.jpg)"
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--threshold",
|
|
type=float,
|
|
default=0.01,
|
|
help="Change threshold (0-1) for including frames (default: 0.01)"
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--debug",
|
|
action="store_true",
|
|
help="Debug mode: analyze changes and generate threshold graph without creating strip image"
|
|
)
|
|
|
|
args = parser.parse_args()
|
|
|
|
# Validate input file
|
|
video_path = Path(args.video_file)
|
|
if not video_path.exists():
|
|
print(f"Error: Video file not found: {video_path}")
|
|
sys.exit(1)
|
|
|
|
# Validate mode selection
|
|
if args.xcolumn is not None and args.yrow is not None:
|
|
print("Error: Cannot specify both --xcolumn and --yrow. Choose one mode.")
|
|
sys.exit(1)
|
|
|
|
# Default to yrow=8 if neither mode specified
|
|
if args.xcolumn is None and args.yrow is None:
|
|
args.yrow = 8
|
|
print(f"Using default: --yrow={args.yrow}")
|
|
|
|
# Validate coordinates
|
|
if args.xcolumn is not None and args.xcolumn < 0:
|
|
print("Error: --xcolumn must be non-negative")
|
|
sys.exit(1)
|
|
|
|
if args.yrow is not None and args.yrow < 0:
|
|
print("Error: --yrow must be non-negative")
|
|
sys.exit(1)
|
|
|
|
# Validate threshold
|
|
if not (0 <= args.threshold <= 1):
|
|
print("Error: --threshold must be between 0 and 1")
|
|
sys.exit(1)
|
|
|
|
# Generate output path
|
|
if args.output:
|
|
output_path = Path(args.output)
|
|
# Add .jpg extension if no extension provided
|
|
if not output_path.suffix:
|
|
output_path = output_path.with_suffix('.jpg')
|
|
print(f"No extension specified, using: {output_path}")
|
|
else:
|
|
# Auto-generate output path in results folder with UUID
|
|
results_dir = Path("results")
|
|
results_dir.mkdir(exist_ok=True)
|
|
# Generate 4-character UUID prefix
|
|
uuid_prefix = uuid.uuid4().hex[:4]
|
|
# Include threshold in filename
|
|
threshold_str = f"t{args.threshold}".replace(".", "_")
|
|
output_filename = f"{video_path.stem}_{uuid_prefix}_{threshold_str}.jpg"
|
|
output_path = results_dir / output_filename
|
|
print(f"No output specified, using: {output_path}")
|
|
|
|
try:
|
|
if args.debug:
|
|
# Debug mode: analyze changes only
|
|
print("Debug mode: Analyzing changes and generating threshold graph")
|
|
|
|
if args.xcolumn is not None:
|
|
print(f"Column mode: Analyzing vertical line at x={args.xcolumn}")
|
|
analyze_changes_only(video_path, x_column=args.xcolumn, debug_output=output_path)
|
|
else:
|
|
print(f"Row mode: Analyzing horizontal line at y={args.yrow}")
|
|
analyze_changes_only(video_path, y_row=args.yrow, debug_output=output_path)
|
|
|
|
print("Change analysis completed successfully!")
|
|
else:
|
|
# Normal mode: extract strip photography
|
|
if args.xcolumn is not None:
|
|
print(f"Column mode: Extracting vertical line at x={args.xcolumn}")
|
|
extract_column_strip(video_path, args.xcolumn, output_path, args.threshold)
|
|
else:
|
|
print(f"Row mode: Extracting horizontal line at y={args.yrow}")
|
|
extract_row_strip(video_path, args.yrow, output_path, args.threshold)
|
|
|
|
print("Strip photography extraction completed successfully!")
|
|
|
|
except Exception as e:
|
|
print(f"Error: {e}")
|
|
sys.exit(1)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main() |