llinescan/main.py
yair-mv 8fece16ca7 Add timestamp overlay feature for video mode
- Add --timestamp / --ts flag to embed frame count on bottom left corner
- Implement add_timestamp_overlay() function with large, visible text
- Yellow text on black background for good visibility
- Shows 'Frame: X/Y' format with current and total frame counts
- Works with both column and row video modes
- Applied after rotation for proper positioning
- Update documentation with timestamp examples and parameter descriptions
- Tested successfully with sample video files
2025-11-08 12:26:11 +02:00

1063 lines
38 KiB
Python

#!/usr/bin/env python3
"""
Strip Photography / Slit Photography Implementation
A digital implementation of strip photography that captures a two-dimensional
image as a sequence of one-dimensional images over time.
"""
import argparse
import sys
import cv2
import numpy as np
import matplotlib.pyplot as plt
from pathlib import Path
import uuid
import math
def calculate_line_difference(line1, line2):
"""
Calculate the difference between two lines (column or row).
Args:
line1, line2: numpy arrays representing lines from consecutive frames
Returns:
float: normalized difference value between 0 and 1
"""
# Convert to float for calculation
diff = np.abs(line1.astype(np.float32) - line2.astype(np.float32))
# Calculate mean difference across all channels
mean_diff = np.mean(diff)
# Normalize to 0-255 range
return mean_diff / 255.0
def generate_change_graph(changes, output_path, threshold=None):
"""
Generate a graph showing change values over time.
Args:
changes: List of change values
output_path: Path for output graph image
threshold: Optional threshold line to display
"""
plt.figure(figsize=(12, 6))
plt.plot(changes, linewidth=1, alpha=0.7)
plt.xlabel('Frame Number')
plt.ylabel('Change Value (0-1)')
plt.title('Line Change Detection Over Time')
plt.grid(True, alpha=0.3)
if threshold is not None:
plt.axhline(y=threshold, color='r', linestyle='--',
label=f'Threshold: {threshold:.3f}')
plt.legend()
# Add statistics
mean_change = np.mean(changes)
max_change = np.max(changes)
std_change = np.std(changes)
stats_text = f'Mean: {mean_change:.3f}\nMax: {max_change:.3f}\nStd: {std_change:.3f}'
plt.text(0.02, 0.98, stats_text, transform=plt.gca().transAxes,
verticalalignment='top', bbox=dict(boxstyle='round', facecolor='wheat', alpha=0.8))
plt.tight_layout()
plt.savefig(output_path, dpi=150, bbox_inches='tight')
plt.close()
print(f"Change graph saved to: {output_path}")
def analyze_changes_only(video_path, x_column=None, y_row=None, debug_output=None, start_frame=0, end_frame=None):
"""
Analyze changes in video without generating strip image.
Used for debug mode to generate change threshold graphs.
Args:
video_path: Path to input video file
x_column: X-coordinate of column to analyze (if column mode)
y_row: Y-coordinate of row to analyze (if row mode)
debug_output: Base path for debug outputs
start_frame: First frame to process (0-based)
end_frame: Last frame to process (None = until end)
Returns:
List of change values
"""
cap = cv2.VideoCapture(str(video_path))
if not cap.isOpened():
raise ValueError(f"Could not open video file: {video_path}")
# Get video properties
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
if x_column is not None:
if x_column >= frame_width:
raise ValueError(f"Column {x_column} is outside video width ({frame_width})")
print(f"Analyzing column {x_column} from {frame_width}x{frame_height} frames")
else:
if y_row >= frame_height:
raise ValueError(f"Row {y_row} is outside video height ({frame_height})")
print(f"Analyzing row {y_row} from {frame_width}x{frame_height} frames")
# Set end frame if not specified
if end_frame is None:
end_frame = total_frames - 1
print(f"Processing frames {start_frame} to {end_frame} ({end_frame - start_frame + 1} frames) for change analysis...")
changes = []
previous_line = None
frame_idx = 0
while True:
ret, frame = cap.read()
if not ret:
break
# Skip frames before start
if frame_idx < start_frame:
frame_idx += 1
continue
# Stop after end frame
if frame_idx > end_frame:
break
# Extract current line (column or row)
if x_column is not None:
current_line = frame[:, x_column, :].copy()
else:
current_line = frame[y_row, :, :].copy()
# Calculate change from previous frame
if previous_line is not None:
change = calculate_line_difference(current_line, previous_line)
changes.append(change)
previous_line = current_line
frame_idx += 1
if (frame_idx - start_frame) % 100 == 0:
print(f"Analyzed {frame_idx - start_frame}/{end_frame - start_frame + 1} frames")
cap.release()
if debug_output:
# Generate change graph (debug_output is now a Path object)
graph_path = debug_output.parent / f"{debug_output.stem}_changes.png"
generate_change_graph(changes, graph_path)
# Generate statistics
if changes:
print(f"\nChange Analysis Statistics:")
print(f"Total frames analyzed: {len(changes)}")
print(f"Mean change: {np.mean(changes):.4f}")
print(f"Max change: {np.max(changes):.4f}")
print(f"Min change: {np.min(changes):.4f}")
print(f"Std deviation: {np.std(changes):.4f}")
# Suggest thresholds
percentiles = [50, 75, 90, 95, 99]
threshold_values = []
print(f"\nSuggested threshold values:")
for p in percentiles:
thresh = np.percentile(changes, p)
threshold_values.append(thresh)
frames_above = np.sum(np.array(changes) >= thresh)
compression = (len(changes) - frames_above) / len(changes) * 100
print(f" {p}th percentile: {thresh:.4f} (keeps {frames_above} frames, {compression:.1f}% compression)")
# Generate PowerShell command to test all suggested thresholds
threshold_list = ",".join([f"{t:.4f}" for t in threshold_values])
video_path_str = str(video_path.absolute())
pwsh_cmd = f"{threshold_list} | %{{uv run .\\main.py {video_path_str} --threshold $_}}"
print(f"\nPowerShell command to test all thresholds:")
print(f" {pwsh_cmd}")
return changes
def add_timeline_overlay(image, frame_numbers):
"""
Add frame number overlay as a timeline/ruler at the bottom of the image.
Always horizontal from left to right.
Args:
image: The strip image to add overlay to
frame_numbers: List of frame numbers that were included
Returns:
Image with timeline overlay
"""
if not frame_numbers:
return image
overlay = image.copy()
font = cv2.FONT_HERSHEY_SIMPLEX
font_scale = 0.4
font_thickness = 1
text_color = (255, 255, 0) # Cyan for visibility
# Calculate text size for spacing
(text_width, text_height), _ = cv2.getTextSize("00000", font, font_scale, font_thickness)
# Horizontal timeline at the bottom from left to right
# Calculate spacing to avoid overlap
available_width = image.shape[1]
image_height = image.shape[0]
num_labels = min(len(frame_numbers), max(10, available_width // (text_width + 10)))
step = max(1, len(frame_numbers) // num_labels)
for i in range(0, len(frame_numbers), step):
frame_num = frame_numbers[i]
text = str(frame_num)
x_pos = int((i / len(frame_numbers)) * available_width)
# Add small tick mark at bottom
cv2.line(overlay, (x_pos, image_height - 10), (x_pos, image_height), text_color, 1)
# Add text above tick mark
cv2.putText(overlay, text, (x_pos + 2, image_height - 12),
font, font_scale, text_color, font_thickness, cv2.LINE_AA)
return overlay
def extract_column_strip(video_path, x_column, output_path, change_threshold=0.005, relax=0, timeline=False, start_frame=0, end_frame=None):
"""
Extract vertical strip at x_column from each frame of the video.
Only include frames where the change exceeds the threshold.
Args:
video_path: Path to input video file
x_column: X-coordinate of the column to extract
output_path: Path for output image
change_threshold: Minimum change threshold (0-1) to include frame
relax: Number of extra frames to include before/after threshold frames
timeline: If True, overlay frame numbers as timeline
start_frame: First frame to process (0-based)
end_frame: Last frame to process (None = until end)
"""
cap = cv2.VideoCapture(str(video_path))
if not cap.isOpened():
raise ValueError(f"Could not open video file: {video_path}")
# Get video properties
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
if x_column >= frame_width:
raise ValueError(f"Column {x_column} is outside video width ({frame_width})")
# Set end frame if not specified
if end_frame is None:
end_frame = total_frames - 1
print(f"Processing frames {start_frame} to {end_frame} ({end_frame - start_frame + 1} frames)...")
print(f"Extracting column {x_column} from {frame_width}x{frame_height} frames")
print(f"Change threshold: {change_threshold}")
if relax > 0:
print(f"Relax: including {relax} frames before/after threshold frames")
# First pass: collect all columns and identify significant frames
all_columns = []
changes = []
frame_numbers = []
previous_column = None
frame_idx = 0
while True:
ret, frame = cap.read()
if not ret:
break
# Skip frames before start
if frame_idx < start_frame:
frame_idx += 1
continue
# Stop after end frame
if frame_idx > end_frame:
break
# Extract current column
current_column = frame[:, x_column, :].copy()
all_columns.append(current_column)
frame_numbers.append(frame_idx)
# Calculate change from previous frame
if previous_column is not None:
change = calculate_line_difference(current_column, previous_column)
changes.append(change)
else:
changes.append(0) # First frame has no change
previous_column = current_column
frame_idx += 1
if (frame_idx - start_frame) % 100 == 0:
print(f"Processed {frame_idx - start_frame}/{end_frame - start_frame + 1} frames")
cap.release()
# Second pass: determine which frames to include
include_mask = [False] * len(all_columns)
for i, change in enumerate(changes):
if i == 0 or change >= change_threshold:
# Mark this frame and surrounding frames
start = max(0, i - relax)
end = min(len(all_columns), i + relax + 1)
for j in range(start, end):
include_mask[j] = True
# Collect significant columns with actual frame numbers
significant_columns = []
significant_frame_numbers = []
for i, col in enumerate(all_columns):
if include_mask[i]:
significant_columns.append(col)
significant_frame_numbers.append(frame_numbers[i])
included_frames = sum(include_mask)
skipped_frames = len(all_columns) - included_frames
if not significant_columns:
raise ValueError("No significant changes detected. Try lowering the threshold.")
# Convert list to numpy array
strip_image = np.stack(significant_columns, axis=1)
# Add timeline overlay if requested
if timeline:
strip_image = add_timeline_overlay(strip_image, significant_frame_numbers)
print(f"Original frames in segment: {len(all_columns)}")
print(f"Included frames: {included_frames}")
print(f"Skipped frames: {skipped_frames}")
print(f"Compression ratio: {skipped_frames/total_frames:.1%}")
print(f"Output dimensions: {strip_image.shape}")
print(f"Saving to: {output_path}")
# Save the strip image
cv2.imwrite(str(output_path), strip_image)
def extract_row_strip(video_path, y_row, output_path, change_threshold=0.01, relax=0, timeline=False, start_frame=0, end_frame=None):
"""
Extract horizontal strip at y_row from each frame of the video.
Only include frames where the change exceeds the threshold.
Args:
video_path: Path to input video file
y_row: Y-coordinate of the row to extract
output_path: Path for output image
change_threshold: Minimum change threshold (0-1) to include frame
relax: Number of extra frames to include before/after threshold frames
timeline: If True, overlay frame numbers as timeline
start_frame: First frame to process (0-based)
end_frame: Last frame to process (None = until end)
"""
cap = cv2.VideoCapture(str(video_path))
if not cap.isOpened():
raise ValueError(f"Could not open video file: {video_path}")
# Get video properties
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
if y_row >= frame_height:
raise ValueError(f"Row {y_row} is outside video height ({frame_height})")
# Set end frame if not specified
if end_frame is None:
end_frame = total_frames - 1
print(f"Processing frames {start_frame} to {end_frame} ({end_frame - start_frame + 1} frames)...")
print(f"Extracting row {y_row} from {frame_width}x{frame_height} frames")
print(f"Change threshold: {change_threshold}")
if relax > 0:
print(f"Relax: including {relax} frames before/after threshold frames")
# First pass: collect all rows and identify significant frames
all_rows = []
changes = []
frame_numbers = []
previous_row = None
frame_idx = 0
while True:
ret, frame = cap.read()
if not ret:
break
# Skip frames before start
if frame_idx < start_frame:
frame_idx += 1
continue
# Stop after end frame
if frame_idx > end_frame:
break
# Extract current row
current_row = frame[y_row, :, :].copy()
all_rows.append(current_row)
frame_numbers.append(frame_idx)
# Calculate change from previous frame
if previous_row is not None:
change = calculate_line_difference(current_row, previous_row)
changes.append(change)
else:
changes.append(0) # First frame has no change
previous_row = current_row
frame_idx += 1
if (frame_idx - start_frame) % 100 == 0:
print(f"Processed {frame_idx - start_frame}/{end_frame - start_frame + 1} frames")
cap.release()
# Second pass: determine which frames to include
include_mask = [False] * len(all_rows)
for i, change in enumerate(changes):
if i == 0 or change >= change_threshold:
# Mark this frame and surrounding frames
start = max(0, i - relax)
end = min(len(all_rows), i + relax + 1)
for j in range(start, end):
include_mask[j] = True
# Collect significant rows with actual frame numbers
significant_rows = []
significant_frame_numbers = []
for i, row in enumerate(all_rows):
if include_mask[i]:
significant_rows.append(row)
significant_frame_numbers.append(frame_numbers[i])
included_frames = sum(include_mask)
skipped_frames = len(all_rows) - included_frames
if not significant_rows:
raise ValueError("No significant changes detected. Try lowering the threshold.")
# Convert list to numpy array
strip_image = np.stack(significant_rows, axis=0)
# Rotate clockwise 90 degrees for row mode
strip_image = cv2.rotate(strip_image, cv2.ROTATE_90_COUNTERCLOCKWISE)
# Add timeline overlay if requested (after rotation)
if timeline:
strip_image = add_timeline_overlay(strip_image, significant_frame_numbers)
print(f"Original frames in segment: {len(all_rows)}")
print(f"Included frames: {included_frames}")
print(f"Skipped frames: {skipped_frames}")
print(f"Compression ratio: {skipped_frames/total_frames:.1%}")
print(f"Output dimensions: {strip_image.shape} (rotated 90° CW)")
print(f"Saving to: {output_path}")
# Save the strip image
cv2.imwrite(str(output_path), strip_image)
def add_timestamp_overlay(frame, frame_count, total_frames):
"""
Add frame count overlay to the bottom left corner of the frame.
Args:
frame: The video frame to add overlay to
frame_count: Current frame number (1-based)
total_frames: Total number of frames
Returns:
Frame with timestamp overlay
"""
overlay = frame.copy()
font = cv2.FONT_HERSHEY_SIMPLEX
font_scale = 1.2
font_thickness = 2
text_color = (0, 255, 255) # Yellow for visibility
bg_color = (0, 0, 0) # Black background
# Create timestamp text
timestamp_text = f"Frame: {frame_count}/{total_frames}"
# Get text size for background rectangle
(text_width, text_height), baseline = cv2.getTextSize(timestamp_text, font, font_scale, font_thickness)
# Position at bottom left with some padding
x_pos = 10
y_pos = frame.shape[0] - 10 # Bottom of frame minus padding
# Draw background rectangle
cv2.rectangle(overlay,
(x_pos - 5, y_pos - text_height - baseline - 5),
(x_pos + text_width + 5, y_pos + baseline + 5),
bg_color, -1)
# Draw text
cv2.putText(overlay, timestamp_text, (x_pos, y_pos - baseline),
font, font_scale, text_color, font_thickness, cv2.LINE_AA)
return overlay
def extract_column_strip_video(video_path, x_column, output_path, change_threshold=0.005, relax=0, start_frame=0, end_frame=None, fps=30, timestamp=False):
"""
Extract vertical strip at x_column from each frame and create an MJPEG video.
Each frame of the output video shows the accumulated scan lines up to that point.
Args:
video_path: Path to input video file
x_column: X-coordinate of the column to extract
output_path: Path for output video file
change_threshold: Minimum change threshold (0-1) to include frame
relax: Number of extra frames to include before/after threshold frames
start_frame: First frame to process (0-based)
end_frame: Last frame to process (None = until end)
fps: Output video frame rate
timestamp: If True, embed frame count on bottom left corner
"""
cap = cv2.VideoCapture(str(video_path))
if not cap.isOpened():
raise ValueError(f"Could not open video file: {video_path}")
# Get video properties
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
if x_column >= frame_width:
raise ValueError(f"Column {x_column} is outside video width ({frame_width})")
# Set end frame if not specified
if end_frame is None:
end_frame = total_frames - 1
print(f"Processing frames {start_frame} to {end_frame} ({end_frame - start_frame + 1} frames)...")
print(f"Extracting column {x_column} from {frame_width}x{frame_height} frames")
print(f"Change threshold: {change_threshold}")
if relax > 0:
print(f"Relax: including {relax} frames before/after threshold frames")
# First pass: collect all columns and identify significant frames
all_columns = []
changes = []
frame_numbers = []
previous_column = None
frame_idx = 0
while True:
ret, frame = cap.read()
if not ret:
break
# Skip frames before start
if frame_idx < start_frame:
frame_idx += 1
continue
# Stop after end frame
if frame_idx > end_frame:
break
# Extract current column
current_column = frame[:, x_column, :].copy()
all_columns.append(current_column)
frame_numbers.append(frame_idx)
# Calculate change from previous frame
if previous_column is not None:
change = calculate_line_difference(current_column, previous_column)
changes.append(change)
else:
changes.append(0) # First frame has no change
previous_column = current_column
frame_idx += 1
if (frame_idx - start_frame) % 100 == 0:
print(f"Processed {frame_idx - start_frame}/{end_frame - start_frame + 1} frames")
cap.release()
# Second pass: determine which frames to include
include_mask = [False] * len(all_columns)
for i, change in enumerate(changes):
if i == 0 or change >= change_threshold:
# Mark this frame and surrounding frames
start = max(0, i - relax)
end = min(len(all_columns), i + relax + 1)
for j in range(start, end):
include_mask[j] = True
# Collect significant columns
significant_columns = []
significant_frame_numbers = []
for i, col in enumerate(all_columns):
if include_mask[i]:
significant_columns.append(col)
significant_frame_numbers.append(frame_numbers[i])
included_frames = sum(include_mask)
skipped_frames = len(all_columns) - included_frames
if not significant_columns:
raise ValueError("No significant changes detected. Try lowering the threshold.")
print(f"Original frames in segment: {len(all_columns)}")
print(f"Included frames: {included_frames}")
print(f"Skipped frames: {skipped_frames}")
print(f"Compression ratio: {skipped_frames/len(all_columns):.1%}")
# Create video writer
# Output video dimensions: height = input frame height, width = number of significant frames
output_width = len(significant_columns)
output_height = frame_height
print(f"Output video dimensions: {output_width}x{output_height}")
print(f"Creating MJPEG video at {fps} FPS: {output_path}")
# Define the codec and create VideoWriter object
fourcc = cv2.VideoWriter_fourcc(*'MJPG')
out = cv2.VideoWriter(str(output_path), fourcc, fps, (output_width, output_height))
if not out.isOpened():
raise ValueError(f"Could not create video writer for: {output_path}")
# Generate video frames - each frame shows accumulated scan lines up to that point
for frame_idx in range(len(significant_columns)):
# Create accumulated strip image up to current frame
accumulated_columns = significant_columns[:frame_idx + 1]
# If we have fewer columns than the final width, pad with the last column
while len(accumulated_columns) < output_width:
accumulated_columns.append(accumulated_columns[-1])
# Convert to numpy array and create the frame
strip_frame = np.stack(accumulated_columns, axis=1)
# Add timestamp overlay if requested
if timestamp:
strip_frame = add_timestamp_overlay(strip_frame, frame_idx + 1, len(significant_columns))
# Write frame to video
out.write(strip_frame)
if (frame_idx + 1) % 100 == 0:
print(f"Generated {frame_idx + 1}/{len(significant_columns)} video frames")
# Release video writer
out.release()
print(f"MJPEG video saved to: {output_path}")
print(f"Video contains {len(significant_columns)} frames at {fps} FPS")
print(f"Total duration: {len(significant_columns)/fps:.2f} seconds")
def extract_row_strip_video(video_path, y_row, output_path, change_threshold=0.01, relax=0, start_frame=0, end_frame=None, fps=30, timestamp=False):
"""
Extract horizontal strip at y_row from each frame and create an MJPEG video.
Each frame of the output video shows the accumulated scan lines up to that point.
Args:
video_path: Path to input video file
y_row: Y-coordinate of the row to extract
output_path: Path for output video file
change_threshold: Minimum change threshold (0-1) to include frame
relax: Number of extra frames to include before/after threshold frames
start_frame: First frame to process (0-based)
end_frame: Last frame to process (None = until end)
fps: Output video frame rate
timestamp: If True, embed frame count on bottom left corner
"""
cap = cv2.VideoCapture(str(video_path))
if not cap.isOpened():
raise ValueError(f"Could not open video file: {video_path}")
# Get video properties
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
if y_row >= frame_height:
raise ValueError(f"Row {y_row} is outside video height ({frame_height})")
# Set end frame if not specified
if end_frame is None:
end_frame = total_frames - 1
print(f"Processing frames {start_frame} to {end_frame} ({end_frame - start_frame + 1} frames)...")
print(f"Extracting row {y_row} from {frame_width}x{frame_height} frames")
print(f"Change threshold: {change_threshold}")
if relax > 0:
print(f"Relax: including {relax} frames before/after threshold frames")
# First pass: collect all rows and identify significant frames
all_rows = []
changes = []
frame_numbers = []
previous_row = None
frame_idx = 0
while True:
ret, frame = cap.read()
if not ret:
break
# Skip frames before start
if frame_idx < start_frame:
frame_idx += 1
continue
# Stop after end frame
if frame_idx > end_frame:
break
# Extract current row
current_row = frame[y_row, :, :].copy()
all_rows.append(current_row)
frame_numbers.append(frame_idx)
# Calculate change from previous frame
if previous_row is not None:
change = calculate_line_difference(current_row, previous_row)
changes.append(change)
else:
changes.append(0) # First frame has no change
previous_row = current_row
frame_idx += 1
if (frame_idx - start_frame) % 100 == 0:
print(f"Processed {frame_idx - start_frame}/{end_frame - start_frame + 1} frames")
cap.release()
# Second pass: determine which frames to include
include_mask = [False] * len(all_rows)
for i, change in enumerate(changes):
if i == 0 or change >= change_threshold:
# Mark this frame and surrounding frames
start = max(0, i - relax)
end = min(len(all_rows), i + relax + 1)
for j in range(start, end):
include_mask[j] = True
# Collect significant rows
significant_rows = []
significant_frame_numbers = []
for i, row in enumerate(all_rows):
if include_mask[i]:
significant_rows.append(row)
significant_frame_numbers.append(frame_numbers[i])
included_frames = sum(include_mask)
skipped_frames = len(all_rows) - included_frames
if not significant_rows:
raise ValueError("No significant changes detected. Try lowering the threshold.")
print(f"Original frames in segment: {len(all_rows)}")
print(f"Included frames: {included_frames}")
print(f"Skipped frames: {skipped_frames}")
print(f"Compression ratio: {skipped_frames/len(all_rows):.1%}")
# Create video writer
# For row mode, we rotate CCW 90°: output video dimensions after rotation
# Before rotation: height = number of significant frames, width = input frame width
# After rotation: height = input frame width, width = number of significant frames
output_width = len(significant_rows) # After rotation
output_height = frame_width # After rotation
print(f"Output video dimensions (after rotation): {output_width}x{output_height}")
print(f"Creating MJPEG video at {fps} FPS: {output_path}")
# Define the codec and create VideoWriter object
fourcc = cv2.VideoWriter_fourcc(*'MJPG')
out = cv2.VideoWriter(str(output_path), fourcc, fps, (output_width, output_height))
if not out.isOpened():
raise ValueError(f"Could not create video writer for: {output_path}")
# Generate video frames - each frame shows accumulated scan lines up to that point
for frame_idx in range(len(significant_rows)):
# Create accumulated strip image up to current frame
accumulated_rows = significant_rows[:frame_idx + 1]
# If we have fewer rows than the final height, pad with the last row
while len(accumulated_rows) < output_height:
accumulated_rows.append(accumulated_rows[-1])
# Convert to numpy array and create the frame
strip_frame = np.stack(accumulated_rows, axis=0)
# Rotate counter-clockwise 90 degrees to match image mode orientation
strip_frame = cv2.rotate(strip_frame, cv2.ROTATE_90_COUNTERCLOCKWISE)
# Add timestamp overlay if requested (after rotation)
if timestamp:
strip_frame = add_timestamp_overlay(strip_frame, frame_idx + 1, len(significant_rows))
# Write frame to video
out.write(strip_frame)
if (frame_idx + 1) % 100 == 0:
print(f"Generated {frame_idx + 1}/{len(significant_rows)} video frames")
# Release video writer
out.release()
print(f"MJPEG video saved to: {output_path}")
print(f"Video contains {len(significant_rows)} frames at {fps} FPS")
print(f"Total duration: {len(significant_rows)/fps:.2f} seconds")
def main():
"""Main entry point for the strip photography tool."""
parser = argparse.ArgumentParser(
description="Extract strip photography effects from video files"
)
parser.add_argument(
"video_file",
help="Input video file path"
)
parser.add_argument(
"--xcolumn",
type=int,
help="Extract vertical line at x-coordinate (column mode)"
)
parser.add_argument(
"--yrow",
type=int,
help="Extract horizontal line at y-coordinate (row mode, default: 8)"
)
parser.add_argument(
"--output",
help="Output file path (default: results/<input_name>.jpg for images, .avi for videos)"
)
parser.add_argument(
"--threshold",
type=float,
default=0.01,
help="Change threshold (0-1) for including frames (default: 0.01)"
)
parser.add_argument(
"--relax",
type=int,
nargs='?',
const=100,
default=0,
help="Include N extra frames before/after frames exceeding threshold (default: 0, or 100 if flag used without value)"
)
parser.add_argument(
"--start",
type=int,
default=0,
help="Start frame number (0-based, default: 0)"
)
parser.add_argument(
"--end",
type=int,
help="End frame number (0-based, default: last frame)"
)
parser.add_argument(
"--timeline",
action="store_true",
help="Overlay frame numbers as timeline/ruler on output image (image mode only)"
)
parser.add_argument(
"--debug",
action="store_true",
help="Debug mode: analyze changes and generate threshold graph without creating strip image"
)
parser.add_argument(
"--video",
action="store_true",
help="Generate MJPEG video showing accumulated scan lines over time"
)
parser.add_argument(
"--fps",
type=float,
default=30.0,
help="Output video frame rate (default: 30.0, only used with --video)"
)
parser.add_argument(
"--timestamp",
"--ts",
action="store_true",
help="Embed frame count on bottom left corner (video mode only)"
)
args = parser.parse_args()
# Validate input file
video_path = Path(args.video_file)
if not video_path.exists():
print(f"Error: Video file not found: {video_path}")
sys.exit(1)
# Validate mode selection
if args.xcolumn is not None and args.yrow is not None:
print("Error: Cannot specify both --xcolumn and --yrow. Choose one mode.")
sys.exit(1)
# Default to yrow=8 if neither mode specified
if args.xcolumn is None and args.yrow is None:
args.yrow = 8
print(f"Using default: --yrow={args.yrow}")
# Validate coordinates
if args.xcolumn is not None and args.xcolumn < 0:
print("Error: --xcolumn must be non-negative")
sys.exit(1)
if args.yrow is not None and args.yrow < 0:
print("Error: --yrow must be non-negative")
sys.exit(1)
# Validate threshold
if not (0 <= args.threshold <= 1):
print("Error: --threshold must be between 0 and 1")
sys.exit(1)
# Validate frame range
if args.start < 0:
print("Error: --start must be non-negative")
sys.exit(1)
if args.end is not None and args.end < args.start:
print("Error: --end must be greater than or equal to --start")
sys.exit(1)
# Validate video mode arguments
if args.video and args.timeline:
print("Warning: --timeline is not supported in video mode, ignoring")
args.timeline = False
if args.video and args.debug:
print("Error: Cannot use --video and --debug modes together")
sys.exit(1)
# Validate FPS
if args.fps <= 0:
print("Error: --fps must be positive")
sys.exit(1)
# Generate output path
if args.output:
output_path = Path(args.output)
# Add appropriate extension if no extension provided
if not output_path.suffix:
if args.video:
output_path = output_path.with_suffix('.avi')
print(f"No extension specified for video mode, using: {output_path}")
else:
output_path = output_path.with_suffix('.jpg')
print(f"No extension specified for image mode, using: {output_path}")
else:
# Auto-generate output path in results folder with UUID
if args.debug:
results_dir = Path("results/debug")
elif args.video:
results_dir = Path("results/video")
else:
results_dir = Path("results")
results_dir.mkdir(parents=True, exist_ok=True)
# Generate 4-character UUID prefix
uuid_prefix = uuid.uuid4().hex[:4]
# Include threshold in filename
threshold_str = f"t{args.threshold}".replace(".", "_")
if args.video:
fps_str = f"fps{args.fps}".replace(".", "_")
output_filename = f"{video_path.stem}_{uuid_prefix}_{threshold_str}_{fps_str}.avi"
else:
output_filename = f"{video_path.stem}_{uuid_prefix}_{threshold_str}.jpg"
output_path = results_dir / output_filename
print(f"No output specified, using: {output_path}")
try:
if args.debug:
# Debug mode: analyze changes only
print("Debug mode: Analyzing changes and generating threshold graph")
if args.xcolumn is not None:
print(f"Column mode: Analyzing vertical line at x={args.xcolumn}")
analyze_changes_only(video_path, x_column=args.xcolumn, debug_output=output_path,
start_frame=args.start, end_frame=args.end)
else:
print(f"Row mode: Analyzing horizontal line at y={args.yrow}")
analyze_changes_only(video_path, y_row=args.yrow, debug_output=output_path,
start_frame=args.start, end_frame=args.end)
print("Change analysis completed successfully!")
elif args.video:
# Video mode: create MJPEG video with accumulated scan lines
print("Video mode: Creating MJPEG video with accumulated scan lines")
if args.xcolumn is not None:
print(f"Column mode: Extracting vertical line at x={args.xcolumn}")
extract_column_strip_video(video_path, args.xcolumn, output_path, args.threshold, args.relax,
args.start, args.end, args.fps, args.timestamp)
else:
print(f"Row mode: Extracting horizontal line at y={args.yrow}")
extract_row_strip_video(video_path, args.yrow, output_path, args.threshold, args.relax,
args.start, args.end, args.fps, args.timestamp)
print("MJPEG video generation completed successfully!")
else:
# Normal mode: extract strip photography image
print("Image mode: Creating strip photography image")
if args.xcolumn is not None:
print(f"Column mode: Extracting vertical line at x={args.xcolumn}")
extract_column_strip(video_path, args.xcolumn, output_path, args.threshold, args.relax, args.timeline,
args.start, args.end)
else:
print(f"Row mode: Extracting horizontal line at y={args.yrow}")
extract_row_strip(video_path, args.yrow, output_path, args.threshold, args.relax, args.timeline,
args.start, args.end)
print("Strip photography extraction completed successfully!")
except Exception as e:
print(f"Error: {e}")
sys.exit(1)
if __name__ == "__main__":
main()