food_energy_paper/ag_yields_graph/.ipynb_checkpoints/make_figure-checkpoint.ipynb

580 lines
210 KiB
Plaintext
Raw Normal View History

2023-01-12 16:13:39 +02:00
{
"cells": [
{
"cell_type": "code",
2023-01-12 21:45:54 +02:00
"execution_count": 1,
2023-01-12 20:25:12 +02:00
"id": "41405f3d",
2023-01-12 16:13:39 +02:00
"metadata": {},
"outputs": [],
"source": [
"from matplotlib import pyplot as plt\n",
"import numpy as np"
]
},
{
"cell_type": "markdown",
2023-01-12 20:25:12 +02:00
"id": "dfc88764",
"metadata": {},
"source": [
"## General conversions \n",
"\n",
"Conversions\n",
"\n",
"Sunflower Seeds, sunflower seed kernels, dried\n",
"584kcal/100g\n",
"https://fdc.nal.usda.gov/fdc-app.html#/food-details/170562/nutrients\n",
"FDC ID: 170562\n",
"USDA Unit LB/acre\n",
" \n",
"Potatoes, flesh and skin, raw\n",
"https://fdc.nal.usda.gov/fdc-app.html#/food-details/170026/nutrients\n",
"77kcal/100g\n",
"FDC ID: 170026 \n",
"USDA Unit CWT/acre\n",
"1 CWT = 100lbs\n",
" \n",
"Wheat, hard red winter\n",
"FDC ID: 168890\n",
"327kcal/100g\n",
"https://fdc.nal.usda.gov/fdc-app.html#/food-details/168890/nutrients\n",
"USDA Unit BU/acre\n",
"60lb / BU https://www.plainsgrains.org/wp-content/uploads/2018/10/2017-HRWW-Report__HiRes-FINAL.pdf\n",
"\n",
"Corn grain, yellow\n",
"365kcal/100g\n",
"https://fdc.nal.usda.gov/fdc-app.html#/food-details/170288/nutrients\n",
"FDC ID: 170288 \n",
"USDA Unit BU/acre\n",
"Shelled, 56lbs/BU\n",
"\n",
"Soybeans, mature seeds, raw\n",
"446kcal/100g\n",
"https://fdc.nal.usda.gov/fdc-app.html#/food-details/174270/nutrients\n",
"FDC ID: 174270 \n",
"USDA Unit BU/acre\n",
"60LB/BU https://soybeanresearchinfo.com/research-highlight/exploring-the-impact-of-genetics-on-soybean-test-weight\n"
]
},
{
"cell_type": "markdown",
"id": "72029669",
2023-01-12 16:13:39 +02:00
"metadata": {},
"source": [
"## Corn"
]
},
{
"cell_type": "code",
2023-01-12 21:45:54 +02:00
"execution_count": 2,
2023-01-12 20:25:12 +02:00
"id": "116f0267",
2023-01-12 16:13:39 +02:00
"metadata": {},
2023-01-12 21:45:54 +02:00
"outputs": [
{
"data": {
"text/plain": [
"array([[ nan, 2022. , nan, nan, nan, nan, nan, nan,\n",
" nan, nan, nan, nan, nan, 0. , nan, nan,\n",
" nan, nan, 172.3, nan],\n",
" [ nan, 2021. , nan, nan, nan, nan, nan, nan,\n",
" nan, nan, nan, nan, nan, 0. , nan, nan,\n",
" nan, nan, 176.7, nan],\n",
" [ nan, 2020. , nan, nan, nan, nan, nan, nan,\n",
" nan, nan, nan, nan, nan, 0. , nan, nan,\n",
" nan, nan, 171.4, nan]])"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
2023-01-12 16:13:39 +02:00
"source": [
"csv=np.genfromtxt ('./data/corn.csv',\n",
" skip_header=1,\n",
" delimiter=\",\")\n",
"csv[0:3]\n",
"#csv[0:3].astype(float)"
]
},
{
"cell_type": "code",
2023-01-12 21:45:54 +02:00
"execution_count": 3,
2023-01-12 20:25:12 +02:00
"id": "0db69a97",
2023-01-12 16:13:39 +02:00
"metadata": {},
"outputs": [],
"source": [
"corn_year=csv[:,1]\n",
2023-01-12 20:25:12 +02:00
"corn_bu_per_acre=csv[:,-2]\n",
"\n",
"grams_per_lbs=453.592\n",
"corn_lbs_per_bu=(56.0/1.0)\n",
"corn_kcal_per_gram=(365/100)\n",
"corn_kcal_per_acre = corn_bu_per_acre*corn_lbs_per_bu*grams_per_lbs*corn_kcal_per_gram"
2023-01-12 16:13:39 +02:00
]
},
{
"cell_type": "code",
2023-01-12 21:45:54 +02:00
"execution_count": 4,
2023-01-12 20:25:12 +02:00
"id": "eb375958",
2023-01-12 16:13:39 +02:00
"metadata": {},
2023-01-12 21:45:54 +02:00
"outputs": [
{
"data": {
"text/plain": [
"<matplotlib.legend.Legend at 0x1cfcd9fdc70>"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAHFCAYAAAAUpjivAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB3G0lEQVR4nO3deViUVfsH8O+wL8IoqAykgrkl4q6ZS687UK6ZaWou6VumqbmlmZlaLqm5JamvvaalqWmFYfrD3C3FVJSKMFdcUghFBET2Ob8/fGdimO0ZmGEWvp/r4rrkmWeeOQfGeW7Ouc99ZEIIASIiIiIH5WTtBhARERFZEoMdIiIicmgMdoiIiMihMdghIiIih8Zgh4iIiBwagx0iIiJyaAx2iIiIyKEx2CEiIiKHxmCHiIiIHBqDHbJp8+bNg0wmw71793Q+HhYWhi5dumgcu3XrFsaPH4+GDRvC09MTfn5+aNq0KV577TXcunVL8mvHxMRAJpPB398f+fn55emGQao+Wsr169chk8mwefNm9bGTJ09i3rx5ePDggcVe19I2b94MmUyG69evW/S5Xbp00XqPmVOXLl0gk8kQGRmp9Zjqd/fxxx/rfK6U92hOTg6WLFmC5s2bw9fXFz4+PqhXrx4GDRqEY8eOaZx74cIFDB8+HE8++SQ8PDxQvXp1tGrVChMmTEBWVpak/nzwwQcIDQ2FUqmU1IePP/5Y63dRWFiI//znP2jbti38/Pzg5eWF4OBg9OvXD9HR0Vo/H9WXq6sr/P390bZtW0yZMgV//PGHwbZOnToVMpkMvXv31vn4pUuX4ObmhnPnzknqO9kuBjvkUP766y+0atUKBw4cwNSpU7Fv3z58/vnnGDJkCM6cOYNr165JvtbGjRsBAPfv38fu3bst1GLg3//+N+Li4ix2fV1OnjyJ+fPn23Ww06tXL8TFxSEwMNDaTTGL/fv34/DhwyY9x9h7tLi4GOHh4Vi4cCEGDhyIXbt24ZtvvsGUKVOQmZmJn376SX3u+fPn0bp1ayQlJeH9999HbGws1q9fj169emH//v24f/++0fbcuXMHS5cuxQcffAAnp7LfXoYPH46JEyeia9eu2Lp1K/bs2YP33nsPLi4u2L9/v9b5EydORFxcHI4dO4YtW7agf//+iImJQfPmzbFs2TKdr1FYWIitW7cCAGJjY3H79m2tcxo2bIhhw4ZhypQpZe4L2QhBZMPmzp0rAIi7d+/qfLxJkyaic+fO6u/ff/99AUBcu3ZN5/nFxcWSXjclJUW4uLiIbt26CQ8PD9GzZ0+T225MTk6O2a+pS3JysgAgNm3apD62bNkyAUAkJyeb9bUePXoklEqlWa9pCZs2bZLc/86dO2u8x8ytc+fOomHDhuLJJ58UrVu31vj5qX53y5Yt03qelPfo4cOHBQDx+eef63ztkv8fRowYIby9vUVWVpbOc6X8XmfMmCGeeOIJjesa6oMQ2u/Fa9euCQDi/fffN9pmQ9d+9OiRiIyMFADEvn37tB7ftWuXACB69eolAIiFCxfqfL2zZ88KAOLEiRN6+022jyM75FDS09Ph5OSEmjVr6nxc6l+bX3zxBYqKijBlyhQMGDAAhw4dwo0bN7TOe/DgAcaMGQM/Pz9UqVIFvXr1wrVr1yCTyTBv3jz1eaqpqnPnzmHgwIGoVq0a6tWrp/FYadu2bUP79u1RpUoVVKlSBS1atFD/JQ8AISEhGDVqlNbzjE27zJs3D2+//TYAoG7duuopgKNHjwKAVtv1vZ5qKujHH3/E6NGjUaNGDXh5eamnU77++mu0b98e3t7eqFKlCiIiInD+/Hm97QIeT0u4uLhg8eLFWo8dP34cMpkMu3bt0nj90lNRBw8eRPfu3eHr6wsvLy907NgRhw4dMvi6ACCEwNKlSxEcHAwPDw+0atUK//d//6d1nlKpxIIFC9CoUSN4enqiatWqaNasGVavXm30NfRxdXXFwoULER8fj6+//lrSc6S8R9PT0wFA7+hXyf8P6enp8PX1RZUqVXSea2yqtaCgABs3bsTQoUPLNapjSpsN8fT0xMaNG+Hq6qpzdGfjxo1wc3PDpk2bULt2bWzatAlCx77YrVu3RuPGjbF+/XoTekG2hsEOOZT27dtDqVRiwIAB2L9/v+Q8g9I+//xzBAYG4rnnnsPo0aOhVCo1cl6Axze9Pn36YNu2bZg5cyaio6PRrl07nbkXKgMGDED9+vWxa9cugx+e77//PoYNG4agoCBs3rwZ0dHRGDlypM6Ay1T//ve/MXHiRADAd999h7i4OMTFxaFVq1Zlut7o0aPh6uqKLVu24JtvvoGrqysWLVqEIUOGIDQ0FDt37sSWLVuQnZ2NZ599FklJSXqvFRISgr59+2L9+vUoLi7WeCwqKgpBQUF44YUX9D5/69atCA8Ph6+vL7744gvs3LkTfn5+iIiIMBrwzJ8/HzNnzkTPnj2xe/dujBs3Dq+99houXryocd7SpUsxb948DBkyBHv37sXXX3+NMWPGlHtKcPDgwWjdujXee+89FBYWGj1fynu0TZs2cHV1xVtvvYWvvvoKKSkpeq/Xvn17pKSkYNiwYTh27Bhyc3NNav8vv/yC9PR0dO3a1aTnlda4cWNUrVoV8+fPx4YNG8qUk6USFBSE1q1b4+TJkygqKlIf/+uvv/Djjz+iX79+qFGjBkaOHIkrV67g+PHjOq/TpUsX/N///Z/OYIjshJVHlogMMnUaS6lUirFjxwonJycBQMhkMtG4cWMxZcoUyVM2x48fFwDEO++8o75m3bp1RXBwsMZQ/t69ewUAsW7dOo3nL168WAAQc+fO1eqHrqF51WMq165dE87OzmLYsGEG2xkcHCxGjhypdbz0tIup01il267v9VRTQSNGjNA47+bNm8LFxUVMnDhR43h2drZQKBRi0KBBBvt15MgRAUBER0erj92+fVu4uLiI+fPna72+qg85OTnCz89P9OnTR+N6xcXFonnz5uLpp5/W+9yMjAzh4eEhXnjhBY3nnjhxQgDQ+Hn27t1btGjRwmAfTNG5c2fRpEkTIYQQBw8eFADEmjVrhBD6p2mkvkeFEGLjxo2iSpUqAoAAIAIDA8WIESPE8ePHNc7Ly8sT/fv3V5/n7OwsWrZsKWbPni3S0tKM9mPJkiUCgEhNTdU4buo0lhCP/29Vr15d3RZ/f3/x0ksviZiYGJOuLYQQgwcPFgDE33//rT72wQcfCAAiNjZWCPH4/5xMJhPDhw/XeY3PPvtMABAXLlww+DMg28WRHXIoMpkM69evx7Vr17B27Vq8+uqrKCwsxMqVK9GkSROt1Se6qKaKRo8erb7mqFGjcOPGDY3RAdW1Bg0apPH8IUOG6L32iy++aPT1Dxw4gOLiYrz55ptGz7UFpfu0f/9+FBUVYcSIESgqKlJ/eXh4oHPnzurpMn26dOmC5s2b49NPP1UfW79+PWQyGV5//XW9zzt58iTu37+PkSNHaryuUqlEZGQkzpw5g5ycHJ3PjYuLQ15eHoYNG6ZxvEOHDggODtY49vTTT+PXX3/F+PHjyzV6qEv37t0RHh6ODz74ANnZ2XrPk/oeVZ3z119/Ydu2bZg0aRJq166NrVu3onPnzhrTO+7u7oiOjkZSUhJWrlyJl19+GXfv3sXChQvRuHFjrRGu0u7cuQOZTIbq1auXtftqzz//PG7evIno6GhMnz4dTZo0we7du9G3b19MmDDBpGuJUqMxQgj11FXPnj0BPJ7O7dKlC7799ludv0/VtLiuJGayDwx2yKa5uLgAgNaUhkpRURFcXV21jgcHB2PcuHHYuHEjLl++jK+//hp5eXnqXBV9srOzsWvXLjz99NOoUaMGHjx4gAcPHuCFF16ATCbTyJlJT0+Hi4sL/Pz8NK4REBCg9/pSVg7dvXsXAFCrVi2j59qC0n36+++/AQBt27aFq6urxtfXX3+tt4xASZMmTcKhQ4dw8eJFFBYW4rPPPsPAgQOhUCj0Pkf1ugMHDtR63SVLlkAIoXdFkSpPRNf1Sx+bNWsWPv74Y5w6dQrPPfcc/P390b17d5w9e9Zov6RYsmQJ7t2
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
2023-01-12 20:25:12 +02:00
"source": [
"plt.plot(corn_year,corn_bu_per_acre,\"o\",label=\"corn\")\n",
"plt.xlabel(\"time (calendar year)\")\n",
"plt.ylabel(\"Corn, bu/acre\")\n",
"plt.title(\"US Agriculture yields, NASS (USDA)\")\n",
"plt.legend()\n",
"\n",
"#plt.show()\n",
"#plt.savefig(\"bear-quadratic.pdf\")"
]
2023-01-12 16:13:39 +02:00
},
{
"cell_type": "code",
2023-01-12 21:45:54 +02:00
"execution_count": 5,
2023-01-12 20:25:12 +02:00
"id": "9c6ffb7f",
2023-01-12 16:13:39 +02:00
"metadata": {},
2023-01-12 21:45:54 +02:00
"outputs": [
{
"data": {
"text/plain": [
"<matplotlib.legend.Legend at 0x1cfce31ca00>"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHFCAYAAAAOmtghAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABwb0lEQVR4nO3deVxU1fsH8M+wbzIKiAMuYJom4m6ZW+5bapmZpuZeuZv6a7PFpSxSy6zMpXL5lrkXiuWXUnFJxV1Kw3LDUBwiQQFR1jm/P2jmyzDbnWGGWfi8Xy965Z1775yDOPfhnOc8RyaEECAiIiJyEW72bgARERGRNTG4ISIiIpfC4IaIiIhcCoMbIiIicikMboiIiMilMLghIiIil8LghoiIiFwKgxsiIiJyKQxuiIiIyKUwuCGHMX/+fMhkMty6dUvv69HR0ejatavWsevXr2PKlClo1KgRfH19ERQUhGbNmuGFF17A9evXJb93XFwcZDIZgoODUVBQUJFuGKXuo61cu3YNMpkM69ev1xw7evQo5s+fjzt37tjsfW1t/fr1kMlkuHbtmk2v7dq1q87PmDV17doVMpkMffv21XlN/Xf34Ycf6r1Wys9oXl4eFi1ahBYtWiAwMBDVqlVDgwYNMHToUBw8eFDr3AsXLmDUqFF44IEH4OPjg5CQELRu3RrTpk1DTk6OpP688847iIqKgkqlktSHDz/8UOfvoqioCKtXr8bDDz+MoKAg+Pn5ISIiAk8++SRiY2N1vj/qL09PTwQHB+Phhx/GrFmz8Pvvvxtt6+zZsyGTyTBgwAC9r1+8eBFeXl44c+aMpL6TY2NwQ07rxo0baN26Nfbs2YPZs2dj9+7dWLt2LYYPH46TJ0/i6tWrku+1Zs0aAEBWVhZ27NhhoxYDzz//PBITE212f32OHj2KBQsWOHVw079/fyQmJiIsLMzeTbGKn376CQkJCWZdY+pntKSkBL1798Z7772HIUOGYNu2bdi+fTtmzZqF7Oxs/PLLL5pzz549izZt2iA5ORlz585FfHw8Vq1ahf79++Onn35CVlaWyfbcvHkTixcvxjvvvAM3N8sfJaNGjcL06dPRrVs3bNiwAbt27cJbb70FDw8P/PTTTzrnT58+HYmJiTh48CC++eYbDBo0CHFxcWjRogWWLFmi9z2KioqwYcMGAEB8fDzS0tJ0zmnUqBFGjhyJWbNmWdwXciCCyEHMmzdPABD//POP3tebNm0qunTpovnz3LlzBQBx9epVveeXlJRIel+lUik8PDxE9+7dhY+Pj+jVq5fZbTclLy/P6vfUJyUlRQAQ69at0xxbsmSJACBSUlKs+l737t0TKpXKqve0hXXr1knuf5cuXbR+xqytS5cuolGjRuKBBx4Qbdq00fr+qf/ulixZonOdlJ/RhIQEAUCsXbtW73uX/fcwevRo4e/vL3JycvSeK+Xv9dVXXxW1a9fWuq+xPgih+7N49epVAUDMnTvXZJuN3fvevXuib9++AoDYvXu3zuvbtm0TAET//v0FAPHee+/pfb9Tp04JAOLIkSMG+03OgSM35LQyMzPh5uaG0NBQva9L/W3yP//5D4qLizFr1iwMHjwY+/btw19//aVz3p07dzBhwgQEBQUhICAA/fv3x9WrVyGTyTB//nzNeeqppzNnzmDIkCGoUaMGGjRooPVaeRs3bkT79u0REBCAgIAAtGzZUvObOgBERkZi7NixOteZmkaZP38+XnnlFQBA/fr1NUP6Bw4cAACdtht6P/XUzs8//4zx48ejZs2a8PPz00yPbNmyBe3bt4e/vz8CAgLQp08fnD171mC7gNJpBg8PD8TExOi8dujQIchkMmzbtk3r/ctPLe3duxc9evRAYGAg/Pz80LFjR+zbt8/o+wKAEAKLFy9GREQEfHx80Lp1a/z3v//VOU+lUmHhwoVo3LgxfH19Ub16dTRv3hyffPKJyfcwxNPTE++99x5Onz6NLVu2SLpGys9oZmYmABgc3Sr77yEzMxOBgYEICAjQe66pqdPCwkKsWbMGI0aMqNCojTltNsbX1xdr1qyBp6en3tGbNWvWwMvLC+vWrUPdunWxbt06CD17Rrdp0wZNmjTBqlWrzOgFOSIGN+S02rdvD5VKhcGDB+Onn36SnCdQ3tq1axEWFoZ+/fph/PjxUKlUWjkrQOlDbuDAgdi4cSNee+01xMbGol27dnpzJ9QGDx6Mhg0bYtu2bUY/LOfOnYuRI0ciPDwc69evR2xsLMaMGaM3wDLX888/j+nTpwMAvv/+eyQmJiIxMRGtW7e26H7jx4+Hp6cnvvnmG2zfvh2enp54//33MXz4cERFRWHr1q345ptvkJubi86dOyM5OdngvSIjI/HEE09g1apVKCkp0Xpt+fLlCA8Px1NPPWXw+g0bNqB3794IDAzEf/7zH2zduhVBQUHo06ePyQBnwYIFeO2119CrVy/s2LEDkydPxgsvvIA///xT67zFixdj/vz5GD58OH788Uds2bIFEyZMqPAU37Bhw9CmTRu89dZbKCoqMnm+lJ/Rtm3bwtPTEy+99BK+/fZbKJVKg/dr3749lEolRo4ciYMHD+L+/ftmtf/48ePIzMxEt27dzLquvCZNmqB69epYsGABvvjiC4tyqtTCw8PRpk0bHD16FMXFxZrjN27cwM8//4wnn3wSNWvWxJgxY3D58mUcOnRI7326du2K//73v3qDH3Iidh45ItIwd1pKpVKJiRMnCjc3NwFAyGQy0aRJEzFr1izJUzCHDh0SAMTrr7+uuWf9+vVFRESE1tD8jz/+KACIlStXal0fExMjAIh58+bp9EPfULv6NbWrV68Kd3d3MXLkSKPtjIiIEGPGjNE5Xn4axdxpqfJtN/R+6qmd0aNHa52XmpoqPDw8xPTp07WO5+bmCoVCIYYOHWq0X/v37xcARGxsrOZYWlqa8PDwEAsWLNB5f3Uf8vLyRFBQkBg4cKDW/UpKSkSLFi3EI488YvDa27dvCx8fH/HUU09pXXvkyBEBQOv7OWDAANGyZUujfTBHly5dRNOmTYUQQuzdu1cAEJ999pkQwvC0i9SfUSGEWLNmjQgICBAABAARFhYmRo8eLQ4dOqR1Xn5+vhg0aJDmPHd3d9GqVSvx5ptvioyMDJP9WLRokQAg0tPTtY6bOy0lROm/rZCQEE1bgoODxTPPPCPi4uLMurcQQgwbNkwAEH///bfm2DvvvCMAiPj4eCFE6b85mUwmRo0apfceX375pQAgLly4YPR7QI6tSo/cHDp0CAMHDkR4eDhkMpnZiaTqKYbyX/7+/rZpMGmRyWRYtWoVrl69ihUrVmDcuHEoKirCxx9/jKZNm+qsDtFHPfUzfvx4zT3Hjh2Lv/76S+u3f/W9hg4dqnX98OHDDd776aefNvn+e/bsQUlJCaZOnWryXEdQvk8//fQTiouLMXr0aBQXF2u+fHx80KVLF830lyFdu3ZFixYt8Pnnn2uOrVq1CjKZDC+++KLB644ePYqsrCyMGTNG631VKhX69u2LkydPIi8vT++1iYmJyM/Px8iRI7WOd+jQAREREVrHHnnkEfz666+YMmVKhUYH9enRowd69+6Nd955B7m5uQbPk/ozqj7nxo0b2LhxI2bMmIG6detiw4YN6NKli9Z0jbe3N2JjY5GcnIyPP/4Yzz77LP755x+89957aNKkic4IVnk3b96ETCZDSEiIpd3XePzxx5GamorY2Fi8/PLLaNq0KXbs2IEnnngC06ZNM+teotxoixBCMxXVq1cvAKXTs127dsV3332n9+9TPc2tL+mYnEeVDm7y8vLQokULLF++3KLrX375ZSiVSq2vqKgoPPPMM1ZuadXg4eEBADpTFGrFxcXw9PTUOR4REYHJkydjzZo1uHTpErZs2YL8/HxNrokhubm52LZtGx555BHUrFkTd+7cwZ07d/DUU09BJpNp5bxkZmbCw8MDQUFBWveoVauWwftLWdnzzz//AADq1Klj8lxHUL5Pf//9NwDg4Ycfhqenp9bXli1bDC7rL2vGjBnYt28f/vzzTxQVFeHLL7/EkCFDoFAoDF6jft8
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
2023-01-12 16:13:39 +02:00
"source": [
2023-01-12 20:25:12 +02:00
"plt.plot(corn_year,corn_kcal_per_acre,\"o\",label=\"corn\")\n",
2023-01-12 16:13:39 +02:00
"plt.xlabel(\"time (calendar year)\")\n",
2023-01-12 20:25:12 +02:00
"plt.ylabel(\"kcal/acre\")\n",
2023-01-12 16:13:39 +02:00
"plt.title(\"US Agriculture yields, NASS (USDA)\")\n",
"plt.legend()\n",
"\n",
"#plt.show()\n",
"#plt.savefig(\"bear-quadratic.pdf\")"
]
},
{
"cell_type": "markdown",
2023-01-12 20:25:12 +02:00
"id": "fa891f0e",
"metadata": {},
"source": [
"## Wheat"
]
},
{
"cell_type": "code",
2023-01-12 21:45:54 +02:00
"execution_count": 6,
2023-01-12 20:25:12 +02:00
"id": "263ea341",
"metadata": {},
2023-01-12 21:45:54 +02:00
"outputs": [
{
"data": {
"text/plain": [
"array([[ nan, 2022. , nan, nan, nan, nan, nan, nan,\n",
" nan, nan, nan, nan, nan, 0. , nan, nan,\n",
" nan, nan, 46.5, nan],\n",
" [ nan, 2021. , nan, nan, nan, nan, nan, nan,\n",
" nan, nan, nan, nan, nan, 0. , nan, nan,\n",
" nan, nan, 44.3, nan],\n",
" [ nan, 2020. , nan, nan, nan, nan, nan, nan,\n",
" nan, nan, nan, nan, nan, 0. , nan, nan,\n",
" nan, nan, 49.7, nan]])"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
2023-01-12 20:25:12 +02:00
"source": [
"csv=np.genfromtxt ('./data/wheat.csv',\n",
" skip_header=1,\n",
" delimiter=\",\")\n",
"csv[0:3]\n",
"#csv[0:3].astype(float)"
]
},
{
"cell_type": "code",
2023-01-12 21:45:54 +02:00
"execution_count": 7,
2023-01-12 20:25:12 +02:00
"id": "5aa38243",
"metadata": {},
"outputs": [],
"source": [
"wheat_year=csv[:,1]\n",
"wheat_bu_per_acre=csv[:,-2]\n",
"\n",
"wheat_lbs_per_bu=60\n",
"#grams_per_lbs\n",
"wheat_kcal_per_gram=327.0/100.0\n",
"\n",
"wheat_kcal_per_acre=wheat_bu_per_acre*wheat_lbs_per_bu*grams_per_lbs*wheat_kcal_per_gram"
]
},
{
"cell_type": "code",
2023-01-12 21:45:54 +02:00
"execution_count": 9,
2023-01-12 20:25:12 +02:00
"id": "5dd77124",
"metadata": {},
2023-01-12 21:45:54 +02:00
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjoAAAHFCAYAAAD7ZFORAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAACcxklEQVR4nO3deVwU9f8H8Ndyg1wCIuABeIuoeOUtah54X5l5a2Z9zSO10kzNo8wjS82rNI9S86o0LH+Y9wmKBx5hHohiCh6goCiH7Pz+oFlmd2d2Z3ZnT97Px4NHMjsz+5ll23nv5/P+vD8KhmEYEEIIIYTYIQdLN4AQQgghxFQo0CGEEEKI3aJAhxBCCCF2iwIdQgghhNgtCnQIIYQQYrco0CGEEEKI3aJAhxBCCCF2iwIdQgghhNgtCnQIIYQQYrco0CFWafbs2VAoFHj8+DHv45GRkWjbtq3atrt37+L9999HjRo14O7uDj8/P9StWxejR4/G3bt3RT93bGwsFAoF/P39kZ+fb8xl6MReo6ncvn0bCoUCGzduVG07deoUZs+ejadPn5rseU1t48aNUCgUuH37tkmPbdu2rdZ7TE5t27aFQqFATEyM1mPs327x4sW8x4p5j+bm5mLhwoWoX78+vL294eXlhapVq+LNN9/E0aNH1fa9evUqhg4diipVqsDNzQ0BAQFo2LAhxo0bh5ycHFHXM3fuXERERECpVIq6hsWLF2v9LQoLC/H999+jSZMm8PPzg4eHB0JDQ9GrVy/s2rVL6/Vhf5ydneHv748mTZpg0qRJ+Pvvv3W2dfLkyVAoFOjevTvv49evX4eLiwvOnz8v6tqJdaNAh9iFf//9Fw0bNsT+/fsxefJk7N27F+vXr8fAgQORmJiIW7duiT7XunXrAABZWVnYvXu3iVoMvPPOO4iPjzfZ+fmcOnUKc+bMselAp1u3boiPj0dwcLClmyKLffv24dChQ5KO0fceLSoqQqdOnTBv3jy88cYb2LlzJ3755RdMmjQJ2dnZOH78uGrfCxcuoFGjRkhOTsZnn32GuLg4fPfdd+jWrRv27duHrKwsve25f/8+Fi1ahLlz58LBwfDbytChQzF+/Hi0a9cOmzdvxp49ezBjxgw4OTlh3759WvuPHz8e8fHxOHr0KDZt2oTevXsjNjYW9evXx1dffcX7HIWFhdi8eTMAIC4uDvfu3dPap0aNGhg8eDAmTZpk8LUQK8IQYoVmzZrFAGAePXrE+3idOnWY6Oho1e+fffYZA4C5desW7/5FRUWinjc9PZ1xcnJi2rdvz7i5uTEdO3aU3HZ9cnNzZT8nn9TUVAYAs2HDBtW2r776igHApKamyvpcL168YJRKpaznNIUNGzaIvv7o6Gi195jcoqOjmRo1ajBVqlRhGjVqpPb6sX+7r776Sus4Me/RQ4cOMQCY9evX8z439/+HYcOGMWXKlGFycnJ49xXzd50yZQpToUIFtfPqugaG0X4v3rp1iwHAfPbZZ3rbrOvcL168YGJiYhgAzN69e7Ue37lzJwOA6datGwOAmTdvHu/znT17lgHAnDx5UvC6iW2gHh1iFzIzM+Hg4IDAwEDex8V+y/zxxx/x6tUrTJo0CX379sXBgwdx584drf2ePn2KUaNGwc/PD56enujWrRtu3boFhUKB2bNnq/Zjh6fOnz+PN954A2XLlkXVqlXVHtP0888/o3nz5vD09ISnpyeioqJU3+ABICwsDCNGjNA6Tt9Qy+zZs/Hxxx8DAMLDw1Xd/keOHAEArbYLPR87/PPXX3/h7bffRrly5eDh4aEaQtm+fTuaN2+OMmXKwNPTE507d8aFCxcE2wUUD0U4OTlh/vz5Wo8dO3YMCoUCO3fuVHt+zeGnAwcO4PXXX4e3tzc8PDzQsmVLHDx4UOfzAgDDMFi0aBFCQ0Ph5uaGhg0b4v/+7/+09lMqlfjiiy9Qs2ZNuLu7w9fXF/Xq1cOyZcv0PocQZ2dnzJs3D+fOncP27dtFHSPmPZqZmQkAgr1e3P8fMjMz4e3tDU9PT9599Q2vFhQUYN26dRg0aJBRvTlS2qyLu7s71q1bB2dnZ95enXXr1sHFxQUbNmxApUqVsGHDBjA8a1s3atQItWvXxnfffSfhKog1okCH2IXmzZtDqVSib9++2Ldvn+i8Ak3r169HcHAwunTpgrfffhtKpVItxwUovuH16NEDP//8M6ZOnYpdu3ahadOmvLkWrL59+6JatWrYuXOnzg/Ozz77DIMHD0ZISAg2btyIXbt2Yfjw4bzBllTvvPMOxo8fDwD47bffEB8fj/j4eDRs2NCg87399ttwdnbGpk2b8Msvv8DZ2RlffvklBg4ciIiICOzYsQObNm3Cs2fP0Lp1ayQnJwueKywsDD179sR3332HoqIitcdWrFiBkJAQ9OnTR/D4zZs3o1OnTvD29saPP/6IHTt2wM/PD507d9Yb7MyZMwdTp05Fx44dsXv3bowZMwajR4/GtWvX1PZbtGgRZs+ejYEDB+LPP//E9u3bMWrUKKOHAQcMGIBGjRphxowZKCws1Lu/mPdo48aN4ezsjA8++ABbtmxBenq64PmaN2+O9PR0DB48GEePHsXLly8ltf/06dPIzMxEu3btJB2nqXbt2vD19cWcOXOwZs0ag3KwWCEhIWjUqBFOnTqFV69eqbb/+++/+Ouvv9CrVy+UK1cOw4cPx82bN3Hs2DHe87Rt2xb/93//xxsIERti4R4lQnhJHbpSKpXMe++9xzg4ODAAGIVCwdSuXZuZNGmS6GGaY8eOMQCYTz75RHXO8PBwJjQ0VK37/s8//2QAMKtXr1Y7fv78+QwAZtasWVrXwdcdzz7GunXrFuPo6MgMHjxYZztDQ0OZ4cOHa23XHGqROnSl2Xah52OHf4YNG6a2X1paGuPk5MSMHz9ebfuzZ8+YoKAg5s0339R5XYcPH2YAMLt27VJtu3fvHuPk5MTMmTNH6/nZa8jNzWX8/PyYHj16qJ2vqKiIqV+/PvPaa68JHvvkyRPGzc2N6dOnj9qxJ0+eZACovZ7du3dnoqKidF6DFNHR0UydOnUYhmGYAwcOMACY5cuXMwwjPDQj9j3KMAyzbt06xtPTkwHAAGCCg4OZYcOGMceOHVPbLy8vj+ndu7dqP0dHR6ZBgwbM9OnTmYcPH+q9joULFzIAmIyMDLXtUoeuGKb4/62AgABVW/z9/Zn+/fszsbGxks7NMAwzYMAABgDz4MED1ba5c+cyAJi4uDiGYYr/n1MoFMzQoUN5z7F27VoGAHP16lWdrwGxbtSjQ+yCQqHAd999h1u3bmHVqlUYOXIkCgsLsWTJEtSpU0drlgkfdnjo7bffVp1zxIgRuHPnjlqvAHuuN998U+34gQMHCp67X79+ep9///79KCoqwtixY/Xuaw00r2nfvn149eoVhg0bhlevXql+3NzcEB0drRoiE9K2bVvUr18fK1euVG377rvvoFAo8O677woed+rUKWRlZWH48OFqz6tUKhETE4PExETk5ubyHhsfH4+8vDwMHjxYbXuLFi0QGhqqtu21117DxYsX8f777xvVa8jn9ddfR6dOnTB37lw8e/ZMcD+x71F2n3///Rc///wzJkyYgEqVKmHz5s2Ijo5WG9JxdXXFrl27kJycjCVLluCtt97Co0ePMG/ePNSuXVurZ0vT/fv3oVAoEBAQYOjlq3Tt2hVpaWnYtWsXPvroI9SpUwe7d+9Gz549MW7cOEnnYjR6YRiGUQ1XdezYEUDxEG7btm3x66+/8v492aFwvoRlYjso0CFWycnJCQC0hjFYr169grOzs9b20NBQjBkzBuvWrcONGzewfft25OXlqXJThDx79gw7d+7Ea6+9hnLlyuHp06d4+vQp+vTpA4VCoZYjk5mZCScnJ/j5+amdo3z58oLnFzND6NGjRwCAihUr6t3XGmhe04MHDwAATZo0gbOzs9rP9u3bBUsFcE2YMAEHDx7EtWvXUFhYiLVr1+KNN95AUFCQ4DHs877xxhtaz7tw4UIwDCM4c4jNC+E7v+a2adOmYfHixUhISECXLl3g7++P119/HWfPntV
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
2023-01-12 20:25:12 +02:00
"source": [
"plt.plot(corn_year,corn_bu_per_acre,\"o\",label=\"Corn (BU/ACRE)\")\n",
"plt.plot(wheat_year,wheat_bu_per_acre,\"x\",label=\"Wheat (BU/ACRE)\")\n",
"plt.xlabel(\"time (calendar year)\")\n",
"plt.ylabel(\"Average per acre production\")\n",
"plt.title(\"US Agriculture yields, NASS (USDA)\")\n",
"plt.legend()\n",
"plt.yscale(\"log\")\n",
"#plt.show()\n",
"#plt.savefig(\"bear-quadratic.pdf\")"
]
},
{
"cell_type": "markdown",
"id": "89c8f489",
2023-01-12 16:13:39 +02:00
"metadata": {},
"source": [
"## Potatoes"
]
},
{
"cell_type": "code",
2023-01-12 21:45:54 +02:00
"execution_count": 12,
2023-01-12 20:25:12 +02:00
"id": "c31828d0",
2023-01-12 16:13:39 +02:00
"metadata": {},
2023-01-12 21:45:54 +02:00
"outputs": [
{
"data": {
"text/plain": [
"array([[ nan, 2022., nan, nan, nan, nan, nan, nan, nan,\n",
" nan, nan, nan, nan, 0., nan, nan, nan, nan,\n",
" 438., nan],\n",
" [ nan, 2021., nan, nan, nan, nan, nan, nan, nan,\n",
" nan, nan, nan, nan, 0., nan, nan, nan, nan,\n",
" 444., nan],\n",
" [ nan, 2020., nan, nan, nan, nan, nan, nan, nan,\n",
" nan, nan, nan, nan, 0., nan, nan, nan, nan,\n",
" 461., nan]])"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
2023-01-12 16:13:39 +02:00
"source": [
"csv=np.genfromtxt ('./data/potatoes.csv',\n",
" skip_header=1,\n",
" delimiter=\",\")\n",
"csv[0:3]\n",
"#csv[0:3].astype(float)"
]
},
{
"cell_type": "code",
2023-01-12 21:45:54 +02:00
"execution_count": 13,
2023-01-12 20:25:12 +02:00
"id": "86091fed",
2023-01-12 16:13:39 +02:00
"metadata": {},
"outputs": [],
"source": [
"potatoes_year=csv[:,1]\n",
2023-01-12 20:25:12 +02:00
"potatoes_cwt_per_acre=csv[:,-2]\n",
"\n",
"lbs_per_cwt=100\n",
"#grams_per_lbs\n",
"potatoes_kcal_per_gram=77.0/100.0\n",
"potatoes_kcal_per_acre=potatoes_cwt_per_acre*lbs_per_cwt*grams_per_lbs*potatoes_kcal_per_gram"
2023-01-12 16:13:39 +02:00
]
},
{
"cell_type": "code",
2023-01-12 21:45:54 +02:00
"execution_count": 14,
2023-01-12 20:25:12 +02:00
"id": "5ea8b2ac",
2023-01-12 16:13:39 +02:00
"metadata": {},
2023-01-12 21:45:54 +02:00
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjoAAAHFCAYAAAD7ZFORAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAADAWUlEQVR4nOydeVwUhfvHP8t9I2egIuItouJ9i7fmbR7kkZqVv8xOTYvMxPJIzbRDLQ218oi0LI++WqjgheKFppAXeENyoyAo7Pz+2GaZ3Z3ZnVlmD+B5v168ZOd8ZnZxPvucCoZhGBAEQRAEQVRDbCxtAEEQBEEQhKkgoUMQBEEQRLWFhA5BEARBENUWEjoEQRAEQVRbSOgQBEEQBFFtIaFDEARBEES1hYQOQRAEQRDVFhI6BEEQBEFUW0joEARBEARRbSGhQ1gl0dHRUCgUyM7O5l0fFhaGXr16aSy7c+cOXnvtNTRp0gTOzs7w9vZGy5Yt8corr+DOnTuiz717924oFAr4+PigtLS0MpehF/YaTcXNmzehUCiwefNm9bITJ04gOjoa+fn5Jjuvqdm8eTMUCgVu3rxp0n179eql8xmTk169ekGhUGDQoEE669j37rPPPuPdV8xntKioCMuWLUPr1q3h4eEBd3d3NGzYEOPGjUNCQoLGtqmpqXjhhRfQoEEDODk5wdfXF23btsXrr7+OwsJCUdfz8ccfIzQ0FEqlUtQ1fPbZZzrvxdOnT/Htt9+iQ4cO8Pb2houLC4KDgzFixAjs2rVL5/6wP/b29vDx8UGHDh3wzjvv4PLly3ptnTVrFhQKBYYOHcq7/urVq3BwcMC5c+dEXTth3ZDQIaoFd+/eRdu2bfHXX39h1qxZ+OOPP7Bx40aMHz8ep0+fRlpamuhjxcTEAAByc3Px22+/mchi4OWXX0ZiYqLJjs/HiRMnsHDhwiotdIYMGYLExEQEBgZa2hRZOHDgAA4dOiRpH0Of0fLycgwYMACLFy/GmDFjsGPHDuzcuRPvvPMOCgoKcPToUfW258+fR7t27ZCSkoKPPvoI+/fvxzfffIMhQ4bgwIEDyM3NNWjP/fv3sXz5cnz88cewsTH+sfLCCy/gjTfeQO/evbFlyxbs2bMHH374Iezs7HDgwAGd7d944w0kJiYiISEBP/74I0aOHIndu3ejdevWWLFiBe85nj59ii1btgAA9u/fj3v37uls06RJE0ycOBHvvPOO0ddCWBEMQVghCxYsYAAwWVlZvOtbtGjBREREqF9/9NFHDAAmLS2Nd/vy8nJR583IyGDs7OyYPn36ME5OTkz//v0l226IoqIi2Y/JR3p6OgOA2bRpk3rZihUrGABMenq6rOcqLi5mlEqlrMc0BZs2bRJ9/RERERqfMbmJiIhgmjRpwjRo0IBp166dxv1j37sVK1bo7CfmM3ro0CEGALNx40bec3P/HiZPnsy4uroyhYWFvNuKeV/nzp3L1KlTR+O4+q6BYXQ/i2lpaQwA5qOPPjJos75jFxcXM4MGDWIAMH/88YfO+h07djAAmCFDhjAAmMWLF/Oe78yZMwwA5vjx44LXTVQNyKNDVAtycnJgY2MDf39/3vViv2V+//33KCsrwzvvvIPnnnsOBw8exK1bt3S2y8/Px0svvQRvb2+4ublhyJAhSEtLg0KhQHR0tHo7Njx17tw5jBkzBl5eXmjYsKHGOm22bduGLl26wM3NDW5ubggPD1d/gweA+vXrY+rUqTr7GQq1REdHY86cOQCAkJAQtds/Pj4eAHRsFzofG/75888/MW3aNPj5+cHFxUUdQomNjUWXLl3g6uoKNzc3DBw4EOfPnxe0C1CFIuzs7LB06VKddUeOHIFCocCOHTs0zq8dfoqLi0Pfvn3h4eEBFxcXdOvWDQcPHtR7XgBgGAbLly9HcHAwnJyc0LZtW/zvf//T2U6pVGLRokVo2rQpnJ2dUatWLbRq1QpffPGFwXMIYW9vj8WLF+Ps2bOIjY0VtY+Yz2hOTg4ACHq9uH8POTk58PDwgJubG++2hsKrT548QUxMDCZMmFApb44Um/Xh7OyMmJgY2Nvb83p1YmJi4ODggE2bNiEoKAibNm0CwzPbul27dmjevDm++eYbCVdBWCMkdIhqQZcuXaBUKvHcc8/hwIEDovMKtNm4cSMCAwPx7LPPYtq0aVAqlRo5LoDqgTds2DBs27YN7733Hnbt2oVOnTrx5lqwPPfcc2jUqBF27Nih9z/Ojz76CBMnTkTt2rWxefNm7Nq1C1OmTOEVW1J5+eWX8cYbbwAAfv31VyQmJiIxMRFt27Y16njTpk2Dvb09fvzxR+zcuRP29vZYsmQJxo8fj9DQUPz888/48ccf8fDhQ/To0QMpKSmCx6pfvz6GDx+Ob775BuXl5Rrrvv76a9SuXRujRo0S3H/Lli0YMGAAPDw88P333+Pnn3+Gt7c3Bg4caFDsLFy4EO+99x769++P3377DTNmzMArr7yCK1euaGy3fPlyREdHY/z48di3bx9iY2Px0ksvVToMGBkZiXbt2uHDDz/E06dPDW4v5jPavn172Nvb46233sLWrVuRkZEheLwuXbogIyMDEydOREJCAh4/fizJ/lOnTiEnJwe9e/eWtJ82zZs3R61atbBw4UKsX7/eqBwsltq1a6Ndu3Y4ceIEysrK1Mvv3r2LP//8EyNGjICfnx+mTJmC69ev48iRI7zH6dWrF/73v//xCiGiCmFhjxJB8CI1dKVUKpn/+7//Y2xsbBgAjEKhYJo3b8688847osM0R44cYQAw77//vvqYISEhTHBwsIb7ft++fQwAZt26dRr7L126lAHALFiwQOc6+Nzx7DqWtLQ0xtbWlpk4caJeO4ODg5kpU6boLNcOtUgNXWnbLnQ+NvwzefJkje1u377N2NnZMW+88YbG8ocPHzIBAQHMuHHj9F7X4cOHGQDMrl271Mvu3bvH2NnZMQsXLtQ5P3sNRUVFjLe3NzNs2DCN45WXlzOtW7dmOnbsKLhvXl4e4+TkxIwaNUpj3+PHjzMANO7n0KFDmfDwcL3XIIWIiAimRYsWDMMwTFxcHAOA+eqrrxiGEQ7NiP2MMgzDxMTEMG5ubgwABgATGBjITJ48mTly5IjGdiUlJczIkSPV29na2jJt2rRh5s2bxzx48MDgdSxbtowBwGRmZmoslxq6YhjV35avr6/aFh8fH2bs2LHM7t27JR2bYRgmMjKSAcD8+++/6mUff/wxA4DZv38/wzCqvzmFQsG88MILvMfYsGEDA4BJTU3Vew8I64Y8OkS1QKFQ4JtvvkFaWhrWrl2LF198EU+fPsWqVavQokULnSoTPtjw0LRp09THnDp1Km7duqXhFWCPNW7cOI39x48fL3js0aNHGzz/X3/9hfLycsycOdPgttaA9jUdOHAAZWVlmDx5MsrKytQ/Tk5OiIiIUIfIhOjVqxdat26NNWvWqJd98803UCgUmD59uuB+J06cQG5uLqZMmaJxXqVSiUGDBuH06dMoKiri3TcxMRElJSWYOHGixvKuXbsiODhYY1nHjh1x4cIFvPbaa5XyGvLRt29fDBgwAB9//DEePnwouJ3Yzyi7zd27d7Ft2za8+eabCAoKwpYtWxAREaER0nF0dMSuXbuQkpKCVatW4fnnn0dWVhYWL16M5s2b63i2tLl//z4UCgV8fX2NvXw1gwcPxu3bt7Fr1y68++67aNGiBX777TcMHz4cr7/+uqRjMVpeGIZh1OGq/v37A1CFcHv16oVffvmF9/1kQ+F8CctE1YGEDmGV2NnZAYBOGIOlrKwM9vb2OsuDg4MxY8YMxMTE4Nq1a4iNjUVJSYk6N0WIhw8fYseOHejYsSP8/PyQn5+P/Px8jBo1CgqFQiNHJicnB3Z2dvD29tY4xjPPPCN4fDEVQllZWQCAunXrGtzWGtC+pn///RcA0KFDB9jb22v8xMbGCrYK4PLmm2/i4MGDuHLlCp4+fYoNGzZgzJgxCAgIENyHPe+YMWN0zrts2TIwDCNYOcTmhfAdX3tZVFQUPvvsM5w8eRLPPvssfHx80LdvX5w5c8bgdYlh2bJ
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
2023-01-12 20:25:12 +02:00
"source": [
"plt.plot(corn_year,corn_bu_per_acre,\"o\",label=\"Corn (BU/ACRE)\")\n",
"plt.plot(wheat_year,wheat_bu_per_acre,\"x\",label=\"Wheat (BU/ACRE)\")\n",
"plt.plot(potatoes_year,potatoes_cwt_per_acre,\"+\",label=\"Potatoes (CWT / ACRE)\")\n",
"plt.xlabel(\"time (calendar year)\")\n",
"plt.ylabel(\"Average per acre production\")\n",
"plt.title(\"US Agriculture yields, NASS (USDA)\")\n",
"plt.legend()\n",
"plt.yscale(\"log\")\n",
"#plt.show()\n",
"#plt.savefig(\"bear-quadratic.pdf\")"
]
},
{
"cell_type": "markdown",
"id": "0201b588",
"metadata": {},
"source": [
"## Soybeans"
]
2023-01-12 16:13:39 +02:00
},
{
"cell_type": "code",
2023-01-12 20:25:12 +02:00
"execution_count": null,
"id": "ce223c5b",
2023-01-12 16:13:39 +02:00
"metadata": {},
2023-01-12 20:25:12 +02:00
"outputs": [],
2023-01-12 16:13:39 +02:00
"source": [
2023-01-12 20:25:12 +02:00
"csv=np.genfromtxt ('./data/soybeans.csv',\n",
" skip_header=1,\n",
" delimiter=\",\")\n",
"csv[0:3]\n",
"#csv[0:3].astype(float)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "12fe395c",
"metadata": {},
"outputs": [],
"source": [
"soybeans_year=csv[:,1]\n",
"soybeans_bu_per_acre=csv[:,-2]"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ae3f6ad4",
"metadata": {},
"outputs": [],
"source": [
"plt.plot(corn_year,corn_bu_per_acre,\"o\",label=\"Corn (BU/ACRE)\")\n",
"plt.plot(wheat_year,wheat_bu_per_acre,\"x\",label=\"Wheat (BU/ACRE)\")\n",
"plt.plot(potatoes_year,potatoes_cwt_per_acre,\"+\",label=\"Potatoes (CWT / ACRE)\")\n",
"plt.plot(soybeans_year,soybeans_bu_per_acre,\"*\",label=\"Soybeans (BU/ACRE)\")\n",
2023-01-12 16:13:39 +02:00
"plt.xlabel(\"time (calendar year)\")\n",
2023-01-12 20:25:12 +02:00
"plt.ylabel(\"Average per acre production\")\n",
2023-01-12 16:13:39 +02:00
"plt.title(\"US Agriculture yields, NASS (USDA)\")\n",
"plt.legend()\n",
2023-01-12 20:25:12 +02:00
"plt.yscale(\"log\")\n",
"#plt.show()\n",
"#plt.savefig(\"bear-quadratic.pdf\")"
]
},
{
"cell_type": "markdown",
"id": "c68984fa",
"metadata": {},
"source": [
"## Sugarbeets"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6e74b0b8",
"metadata": {},
"outputs": [],
"source": [
"csv=np.genfromtxt ('./data/sugarbeets.csv',\n",
" skip_header=1,\n",
" delimiter=\",\")\n",
"csv[0:3]\n",
"#csv[0:3].astype(float)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ab73b355",
"metadata": {},
"outputs": [],
"source": [
"sugarbeets_year=csv[:,1]\n",
"sugarbeets_tons_per_acre=csv[:,-2]"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "cbaa454a",
"metadata": {},
"outputs": [],
"source": [
"plt.plot(corn_year,corn_bu_per_acre,\"o\",label=\"Corn (BU/ACRE)\")\n",
"plt.plot(wheat_year,wheat_bu_per_acre,\"x\",label=\"Wheat (BU/ACRE)\")\n",
"plt.plot(potatoes_year,potatoes_cwt_per_acre,\"+\",label=\"Potatoes (CWT / ACRE)\")\n",
"plt.plot(soybeans_year,soybeans_bu_per_acre,\"*\",label=\"Soybeans (BU/ACRE)\")\n",
"plt.plot(sugarbeets_year,sugarbeets_tons_per_acre,\".\",label=\"Sugarbeets (TONS/ACRE)\")\n",
"plt.xlabel(\"time (calendar year)\")\n",
"plt.ylabel(\"Average per acre production\")\n",
"plt.title(\"US Agriculture yields, NASS (USDA)\")\n",
"plt.legend()\n",
"plt.yscale(\"log\")\n",
"#plt.show()\n",
"#plt.savefig(\"bear-quadratic.pdf\")"
]
},
{
"cell_type": "markdown",
"id": "884a7b05",
"metadata": {},
"source": [
"## Sunflowers"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "846722a4",
"metadata": {},
"outputs": [],
"source": [
"csv=np.genfromtxt ('./data/sunflowers.csv',\n",
" skip_header=1,\n",
" delimiter=\",\")\n",
"csv[0:3]\n",
"#csv[0:3].astype(float)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c79d0d11",
"metadata": {},
"outputs": [],
"source": [
"sunflowers_year=csv[:,1]\n",
"sunflowers_lbs_per_acre=csv[:,-2]"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "569111b9",
"metadata": {},
"outputs": [],
"source": [
"plt.plot(corn_year,corn_bu_per_acre,\"o\",label=\"Corn (BU/ACRE)\")\n",
"plt.plot(wheat_year,wheat_bu_per_acre,\"x\",label=\"Wheat (BU/ACRE)\")\n",
"plt.plot(potatoes_year,potatoes_cwt_per_acre,\"+\",label=\"Potatoes (CWT / ACRE)\")\n",
"plt.plot(soybeans_year,soybeans_bu_per_acre,\"*\",label=\"Soybeans (BU/ACRE)\")\n",
"plt.plot(sugarbeets_year,sugarbeets_tons_per_acre,\".\",label=\"Sugarbeets (TONS/ACRE)\")\n",
"plt.plot(sunflowers_year,sunflowers_lbs_per_acre,\"d\",label=\"Sunflowers (LB/ACRE)\")\n",
"plt.xlabel(\"time (calendar year)\")\n",
"plt.ylabel(\"Average per acre production\")\n",
"plt.title(\"US Agriculture yields, NASS (USDA)\")\n",
"plt.legend()\n",
"plt.yscale(\"log\")\n",
2023-01-12 16:13:39 +02:00
"#plt.show()\n",
"#plt.savefig(\"bear-quadratic.pdf\")"
]
2023-01-12 20:25:12 +02:00
},
2023-01-12 21:45:54 +02:00
{
"cell_type": "markdown",
"id": "e2b51946",
"metadata": {},
"source": [
"### All together, kcal/acre"
]
},
2023-01-12 20:25:12 +02:00
{
"cell_type": "code",
"execution_count": null,
2023-01-12 21:45:54 +02:00
"id": "f04309c4",
2023-01-12 20:25:12 +02:00
"metadata": {},
"outputs": [],
2023-01-12 21:45:54 +02:00
"source": [
"plt.plot(corn_year,corn_kcal_per_acre,\"o\",label=\"Corn\")\n",
"plt.plot(wheat_year,wheat_kcal_per_acre,\"x\",label=\"Wheat\")\n",
"plt.plot(potatoes_year,potatoes_kcal_per_acre,\"+\",label=\"Potatoes\")\n",
"plt.plot(soybeans_year,soybeans_kcal_per_acre,\"*\",label=\"Soybeans\")\n",
"#plt.plot(sugarbeets_year,sugarbeets_kcal_per_acre,\".\",label=\"Sugarbeets\")\n",
"plt.plot(sunflowers_year,sunflowers_kcal_per_acre,\"d\",label=\"Sunflowers\")\n",
"plt.xlabel(\"time (calendar year)\")\n",
"plt.ylabel(\"Average per acre production\")\n",
"plt.title(\"US Agriculture yields, NASS (USDA)\")\n",
"plt.legend()\n",
"plt.yscale(\"log\")\n",
"#plt.show()\n",
"#plt.savefig(\"bear-quadratic.pdf\")"
]
2023-01-12 16:13:39 +02:00
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.13"
}
},
"nbformat": 4,
"nbformat_minor": 5
}