Merge chamnit/v0_7 with grbl/master
This commit is contained in:
129
motion_control.c
129
motion_control.c
@@ -3,7 +3,8 @@
|
||||
Part of Grbl
|
||||
|
||||
Copyright (c) 2009-2011 Simen Svale Skogsrud
|
||||
|
||||
Copyright (c) 2011 Sungeun K. Jeon
|
||||
|
||||
Grbl is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
@@ -20,6 +21,7 @@
|
||||
|
||||
#include <avr/io.h>
|
||||
#include "settings.h"
|
||||
#include "config.h"
|
||||
#include "motion_control.h"
|
||||
#include <util/delay.h>
|
||||
#include <math.h>
|
||||
@@ -27,56 +29,115 @@
|
||||
#include "nuts_bolts.h"
|
||||
#include "stepper.h"
|
||||
#include "planner.h"
|
||||
#include "wiring_serial.h"
|
||||
|
||||
|
||||
void mc_dwell(uint32_t milliseconds)
|
||||
// Execute dwell in seconds. Maximum time delay is > 18 hours, more than enough for any application.
|
||||
void mc_dwell(double seconds)
|
||||
{
|
||||
st_synchronize();
|
||||
_delay_ms(milliseconds);
|
||||
uint16_t i = floor(seconds);
|
||||
st_synchronize();
|
||||
_delay_ms(floor(1000*(seconds-i))); // Delay millisecond remainder
|
||||
while (i > 0) {
|
||||
_delay_ms(1000); // Delay one second
|
||||
i--;
|
||||
}
|
||||
}
|
||||
|
||||
// Execute an arc. theta == start angle, angular_travel == number of radians to go along the arc,
|
||||
// positive angular_travel means clockwise, negative means counterclockwise. Radius == the radius of the
|
||||
// circle in millimeters. axis_1 and axis_2 selects the circle plane in tool space. Stick the remaining
|
||||
// axis in axis_l which will be the axis for linear travel if you are tracing a helical motion.
|
||||
// position is a pointer to a vector representing the current position in millimeters.
|
||||
|
||||
#ifdef __AVR_ATmega328P__
|
||||
// The arc is approximated by generating a huge number of tiny, linear segments. The length of each
|
||||
// segment is configured in settings.mm_per_arc_segment.
|
||||
void mc_arc(double theta, double angular_travel, double radius, double linear_travel, int axis_1, int axis_2,
|
||||
int axis_linear, double feed_rate, int invert_feed_rate, double *position)
|
||||
void mc_arc(double *position, double *target, double *offset, uint8_t axis_0, uint8_t axis_1,
|
||||
uint8_t axis_linear, double feed_rate, uint8_t invert_feed_rate, double radius, uint8_t isclockwise)
|
||||
{
|
||||
int acceleration_manager_was_enabled = plan_is_acceleration_manager_enabled();
|
||||
plan_set_acceleration_manager_enabled(FALSE); // disable acceleration management for the duration of the arc
|
||||
double millimeters_of_travel = hypot(angular_travel*radius, labs(linear_travel));
|
||||
double center_axis0 = position[axis_0] + offset[axis_0];
|
||||
double center_axis1 = position[axis_1] + offset[axis_1];
|
||||
double linear_travel = target[axis_linear] - position[axis_linear];
|
||||
double r_axis0 = -offset[axis_0]; // Radius vector from center to current location
|
||||
double r_axis1 = -offset[axis_1];
|
||||
double rt_axis0 = target[axis_0] - center_axis0;
|
||||
double rt_axis1 = target[axis_1] - center_axis1;
|
||||
|
||||
// CCW angle between position and target from circle center. Only one atan2() trig computation required.
|
||||
double angular_travel = atan2(r_axis0*rt_axis1-r_axis1*rt_axis0, r_axis0*rt_axis0+r_axis1*rt_axis1);
|
||||
if (angular_travel < 0) { angular_travel += 2*M_PI; }
|
||||
if (isclockwise) { angular_travel -= 2*M_PI; }
|
||||
|
||||
double millimeters_of_travel = hypot(angular_travel*radius, fabs(linear_travel));
|
||||
if (millimeters_of_travel == 0.0) { return; }
|
||||
uint16_t segments = ceil(millimeters_of_travel/settings.mm_per_arc_segment);
|
||||
uint16_t segments = floor(millimeters_of_travel/settings.mm_per_arc_segment);
|
||||
// Multiply inverse feed_rate to compensate for the fact that this movement is approximated
|
||||
// by a number of discrete segments. The inverse feed_rate should be correct for the sum of
|
||||
// all segments.
|
||||
if (invert_feed_rate) { feed_rate *= segments; }
|
||||
// The angular motion for each segment
|
||||
|
||||
double theta_per_segment = angular_travel/segments;
|
||||
// The linear motion for each segment
|
||||
double linear_per_segment = linear_travel/segments;
|
||||
// Compute the center of this circle
|
||||
double center_x = position[axis_1]-sin(theta)*radius;
|
||||
double center_y = position[axis_2]-cos(theta)*radius;
|
||||
// a vector to track the end point of each segment
|
||||
double target[3];
|
||||
int i;
|
||||
|
||||
/* Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
|
||||
and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
|
||||
r_T = [cos(phi) -sin(phi);
|
||||
sin(phi) cos(phi] * r ;
|
||||
|
||||
For arc generation, the center of the circle is the axis of rotation and the radius vector is
|
||||
defined from the circle center to the initial position. Each line segment is formed by successive
|
||||
vector rotations. This requires only two cos() and sin() computations to form the rotation
|
||||
matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
|
||||
all double numbers are single precision on the Arduino. (True double precision will not have
|
||||
round off issues for CNC applications.) Single precision error can accumulate to be greater than
|
||||
tool precision in some cases. Therefore, arc path correction is implemented.
|
||||
|
||||
Small angle approximation may be used to reduce computation overhead further. This approximation
|
||||
holds for everything, but very small circles and large mm_per_arc_segment values. In other words,
|
||||
theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
|
||||
to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
|
||||
numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
|
||||
issue for CNC machines with the single precision Arduino calculations.
|
||||
|
||||
This approximation also allows mc_arc to immediately insert a line segment into the planner
|
||||
without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
|
||||
a correction, the planner should have caught up to the lag caused by the initial mc_arc overhead.
|
||||
This is important when there are successive arc motions.
|
||||
*/
|
||||
// Vector rotation matrix values
|
||||
double cos_T = 1-0.5*theta_per_segment*theta_per_segment; // Small angle approximation
|
||||
double sin_T = theta_per_segment;
|
||||
|
||||
double arc_target[3];
|
||||
double sin_Ti;
|
||||
double cos_Ti;
|
||||
double r_axisi;
|
||||
uint16_t i;
|
||||
int8_t count = 0;
|
||||
|
||||
// Initialize the linear axis
|
||||
target[axis_linear] = position[axis_linear];
|
||||
for (i=0; i<=segments; i++) {
|
||||
target[axis_linear] += linear_per_segment;
|
||||
theta += theta_per_segment;
|
||||
target[axis_1] = center_x+sin(theta)*radius;
|
||||
target[axis_2] = center_y+cos(theta)*radius;
|
||||
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], feed_rate, invert_feed_rate);
|
||||
arc_target[axis_linear] = position[axis_linear];
|
||||
|
||||
for (i = 1; i<segments; i++) { // Increment (segments-1)
|
||||
|
||||
if (count < N_ARC_CORRECTION) {
|
||||
// Apply vector rotation matrix
|
||||
r_axisi = r_axis0*sin_T + r_axis1*cos_T;
|
||||
r_axis0 = r_axis0*cos_T - r_axis1*sin_T;
|
||||
r_axis1 = r_axisi;
|
||||
count++;
|
||||
} else {
|
||||
// Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
|
||||
// Compute exact location by applying transformation matrix from initial radius vector(=-offset).
|
||||
cos_Ti = cos(i*theta_per_segment);
|
||||
sin_Ti = sin(i*theta_per_segment);
|
||||
r_axis0 = -offset[axis_0]*cos_Ti + offset[axis_1]*sin_Ti;
|
||||
r_axis1 = -offset[axis_0]*sin_Ti - offset[axis_1]*cos_Ti;
|
||||
count = 0;
|
||||
}
|
||||
|
||||
// Update arc_target location
|
||||
arc_target[axis_0] = center_axis0 + r_axis0;
|
||||
arc_target[axis_1] = center_axis1 + r_axis1;
|
||||
arc_target[axis_linear] += linear_per_segment;
|
||||
plan_buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], feed_rate, invert_feed_rate);
|
||||
|
||||
}
|
||||
plan_set_acceleration_manager_enabled(acceleration_manager_was_enabled);
|
||||
// Ensure last segment arrives at target location.
|
||||
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], feed_rate, invert_feed_rate);
|
||||
}
|
||||
#endif
|
||||
|
||||
|
||||
Reference in New Issue
Block a user