Merge chamnit/v0_7 with grbl/master
This commit is contained in:
564
planner.c
564
planner.c
@@ -3,7 +3,8 @@
|
||||
Part of Grbl
|
||||
|
||||
Copyright (c) 2009-2011 Simen Svale Skogsrud
|
||||
|
||||
Copyright (c) 2011 Sungeun K. Jeon
|
||||
|
||||
Grbl is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
@@ -20,38 +21,6 @@
|
||||
|
||||
/* The ring buffer implementation gleaned from the wiring_serial library by David A. Mellis. */
|
||||
|
||||
/*
|
||||
Reasoning behind the mathematics in this module (in the key of 'Mathematica'):
|
||||
|
||||
s == speed, a == acceleration, t == time, d == distance
|
||||
|
||||
Basic definitions:
|
||||
|
||||
Speed[s_, a_, t_] := s + (a*t)
|
||||
Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t]
|
||||
|
||||
Distance to reach a specific speed with a constant acceleration:
|
||||
|
||||
Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t]
|
||||
d -> (m^2 - s^2)/(2 a) --> estimate_acceleration_distance()
|
||||
|
||||
Speed after a given distance of travel with constant acceleration:
|
||||
|
||||
Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t]
|
||||
m -> Sqrt[2 a d + s^2]
|
||||
|
||||
DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2]
|
||||
|
||||
When to start braking (di) to reach a specified destionation speed (s2) after accelerating
|
||||
from initial speed s1 without ever stopping at a plateau:
|
||||
|
||||
Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di]
|
||||
di -> (2 a d - s1^2 + s2^2)/(4 a) --> intersection_distance()
|
||||
|
||||
IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a)
|
||||
*/
|
||||
|
||||
|
||||
#include <inttypes.h>
|
||||
#include <math.h>
|
||||
#include <stdlib.h>
|
||||
@@ -61,39 +30,49 @@
|
||||
#include "stepper.h"
|
||||
#include "settings.h"
|
||||
#include "config.h"
|
||||
#include "wiring_serial.h"
|
||||
|
||||
// The number of linear motions that can be in the plan at any give time
|
||||
#ifdef __AVR_ATmega328P__
|
||||
#define BLOCK_BUFFER_SIZE 20
|
||||
#define BLOCK_BUFFER_SIZE 18
|
||||
#else
|
||||
#define BLOCK_BUFFER_SIZE 5
|
||||
#endif
|
||||
|
||||
static block_t block_buffer[BLOCK_BUFFER_SIZE]; // A ring buffer for motion instructions
|
||||
static volatile int block_buffer_head; // Index of the next block to be pushed
|
||||
static volatile int block_buffer_tail; // Index of the block to process now
|
||||
static volatile uint8_t block_buffer_head; // Index of the next block to be pushed
|
||||
static volatile uint8_t block_buffer_tail; // Index of the block to process now
|
||||
|
||||
// The current position of the tool in absolute steps
|
||||
static int32_t position[3];
|
||||
static int32_t position[3]; // The current position of the tool in absolute steps
|
||||
static double previous_unit_vec[3]; // Unit vector of previous path line segment
|
||||
static double previous_nominal_speed; // Nominal speed of previous path line segment
|
||||
|
||||
static uint8_t acceleration_manager_enabled; // Acceleration management active?
|
||||
|
||||
#define ONE_MINUTE_OF_MICROSECONDS 60000000.0
|
||||
// Returns the index of the next block in the ring buffer
|
||||
// NOTE: Removed modulo (%) operator, which uses an expensive divide and multiplication.
|
||||
static uint8_t next_block_index(uint8_t block_index)
|
||||
{
|
||||
block_index++;
|
||||
if (block_index == BLOCK_BUFFER_SIZE) { block_index = 0; }
|
||||
return(block_index);
|
||||
}
|
||||
|
||||
|
||||
// Returns the index of the previous block in the ring buffer
|
||||
static uint8_t prev_block_index(uint8_t block_index)
|
||||
{
|
||||
if (block_index == 0) { block_index = BLOCK_BUFFER_SIZE; }
|
||||
block_index--;
|
||||
return(block_index);
|
||||
}
|
||||
|
||||
|
||||
// Calculates the distance (not time) it takes to accelerate from initial_rate to target_rate using the
|
||||
// given acceleration:
|
||||
inline double estimate_acceleration_distance(double initial_rate, double target_rate, double acceleration) {
|
||||
return(
|
||||
(target_rate*target_rate-initial_rate*initial_rate)/
|
||||
(2L*acceleration)
|
||||
);
|
||||
static double estimate_acceleration_distance(double initial_rate, double target_rate, double acceleration)
|
||||
{
|
||||
return( (target_rate*target_rate-initial_rate*initial_rate)/(2*acceleration) );
|
||||
}
|
||||
|
||||
// This function gives you the point at which you must start braking (at the rate of -acceleration) if
|
||||
// you started at speed initial_rate and accelerated until this point and want to end at the final_rate after
|
||||
// a total travel of distance. This can be used to compute the intersection point between acceleration and
|
||||
// deceleration in the cases where the trapezoid has no plateau (i.e. never reaches maximum speed)
|
||||
|
||||
/* + <- some maximum rate we don't care about
|
||||
/|\
|
||||
@@ -104,19 +83,113 @@ inline double estimate_acceleration_distance(double initial_rate, double target_
|
||||
^ ^
|
||||
| |
|
||||
intersection_distance distance */
|
||||
// This function gives you the point at which you must start braking (at the rate of -acceleration) if
|
||||
// you started at speed initial_rate and accelerated until this point and want to end at the final_rate after
|
||||
// a total travel of distance. This can be used to compute the intersection point between acceleration and
|
||||
// deceleration in the cases where the trapezoid has no plateau (i.e. never reaches maximum speed)
|
||||
static double intersection_distance(double initial_rate, double final_rate, double acceleration, double distance)
|
||||
{
|
||||
return( (2*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/(4*acceleration) );
|
||||
}
|
||||
|
||||
inline double intersection_distance(double initial_rate, double final_rate, double acceleration, double distance) {
|
||||
return(
|
||||
(2*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/
|
||||
(4*acceleration)
|
||||
);
|
||||
|
||||
// Calculates the maximum allowable speed at this point when you must be able to reach target_velocity
|
||||
// using the acceleration within the allotted distance.
|
||||
// NOTE: sqrt() reimplimented here from prior version due to improved planner logic. Increases speed
|
||||
// in time critical computations, i.e. arcs or rapid short lines from curves. Guaranteed to not exceed
|
||||
// BLOCK_BUFFER_SIZE calls per planner cycle.
|
||||
static double max_allowable_speed(double acceleration, double target_velocity, double distance)
|
||||
{
|
||||
return( sqrt(target_velocity*target_velocity-2*acceleration*distance) );
|
||||
}
|
||||
|
||||
|
||||
// Calculates trapezoid parameters so that the entry- and exit-speed is compensated by the provided factors.
|
||||
// The factors represent a factor of braking and must be in the range 0.0-1.0.
|
||||
// The kernel called by planner_recalculate() when scanning the plan from last to first entry.
|
||||
static void planner_reverse_pass_kernel(block_t *previous, block_t *current, block_t *next)
|
||||
{
|
||||
if (!current) { return; } // Cannot operate on nothing.
|
||||
|
||||
if (next) {
|
||||
// If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising.
|
||||
// If not, block in state of acceleration or deceleration. Reset entry speed to maximum and
|
||||
// check for maximum allowable speed reductions to ensure maximum possible planned speed.
|
||||
if (current->entry_speed != current->max_entry_speed) {
|
||||
|
||||
// If nominal length true, max junction speed is guaranteed to be reached. Only compute
|
||||
// for max allowable speed if block is decelerating and nominal length is false.
|
||||
if ((!current->nominal_length_flag) && (current->max_entry_speed > next->entry_speed)) {
|
||||
current->entry_speed = min( current->max_entry_speed,
|
||||
max_allowable_speed(-settings.acceleration,next->entry_speed,current->millimeters));
|
||||
} else {
|
||||
current->entry_speed = current->max_entry_speed;
|
||||
}
|
||||
current->recalculate_flag = true;
|
||||
|
||||
}
|
||||
} // Skip last block. Already initialized and set for recalculation.
|
||||
}
|
||||
|
||||
/*
|
||||
|
||||
// planner_recalculate() needs to go over the current plan twice. Once in reverse and once forward. This
|
||||
// implements the reverse pass.
|
||||
static void planner_reverse_pass()
|
||||
{
|
||||
uint8_t block_index = block_buffer_head;
|
||||
block_t *block[3] = {NULL, NULL, NULL};
|
||||
while(block_index != block_buffer_tail) {
|
||||
block_index = prev_block_index( block_index );
|
||||
block[2]= block[1];
|
||||
block[1]= block[0];
|
||||
block[0] = &block_buffer[block_index];
|
||||
planner_reverse_pass_kernel(block[0], block[1], block[2]);
|
||||
}
|
||||
// Skip buffer tail/first block to prevent over-writing the initial entry speed.
|
||||
}
|
||||
|
||||
|
||||
// The kernel called by planner_recalculate() when scanning the plan from first to last entry.
|
||||
static void planner_forward_pass_kernel(block_t *previous, block_t *current, block_t *next)
|
||||
{
|
||||
if(!previous) { return; } // Begin planning after buffer_tail
|
||||
|
||||
// If the previous block is an acceleration block, but it is not long enough to complete the
|
||||
// full speed change within the block, we need to adjust the entry speed accordingly. Entry
|
||||
// speeds have already been reset, maximized, and reverse planned by reverse planner.
|
||||
// If nominal length is true, max junction speed is guaranteed to be reached. No need to recheck.
|
||||
if (!previous->nominal_length_flag) {
|
||||
if (previous->entry_speed < current->entry_speed) {
|
||||
double entry_speed = min( current->entry_speed,
|
||||
max_allowable_speed(-settings.acceleration,previous->entry_speed,previous->millimeters) );
|
||||
|
||||
// Check for junction speed change
|
||||
if (current->entry_speed != entry_speed) {
|
||||
current->entry_speed = entry_speed;
|
||||
current->recalculate_flag = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// planner_recalculate() needs to go over the current plan twice. Once in reverse and once forward. This
|
||||
// implements the forward pass.
|
||||
static void planner_forward_pass()
|
||||
{
|
||||
uint8_t block_index = block_buffer_tail;
|
||||
block_t *block[3] = {NULL, NULL, NULL};
|
||||
|
||||
while(block_index != block_buffer_head) {
|
||||
block[0] = block[1];
|
||||
block[1] = block[2];
|
||||
block[2] = &block_buffer[block_index];
|
||||
planner_forward_pass_kernel(block[0],block[1],block[2]);
|
||||
block_index = next_block_index( block_index );
|
||||
}
|
||||
planner_forward_pass_kernel(block[1], block[2], NULL);
|
||||
}
|
||||
|
||||
|
||||
/* STEPPER RATE DEFINITION
|
||||
+--------+ <- nominal_rate
|
||||
/ \
|
||||
nominal_rate*entry_factor -> + \
|
||||
@@ -124,16 +197,20 @@ inline double intersection_distance(double initial_rate, double final_rate, doub
|
||||
+-------------+
|
||||
time -->
|
||||
*/
|
||||
|
||||
void calculate_trapezoid_for_block(block_t *block, double entry_factor, double exit_factor) {
|
||||
block->initial_rate = ceil(block->nominal_rate*entry_factor);
|
||||
block->final_rate = ceil(block->nominal_rate*exit_factor);
|
||||
int32_t acceleration_per_minute = block->rate_delta*ACCELERATION_TICKS_PER_SECOND*60.0;
|
||||
// Calculates trapezoid parameters so that the entry- and exit-speed is compensated by the provided factors.
|
||||
// The factors represent a factor of braking and must be in the range 0.0-1.0.
|
||||
// This converts the planner parameters to the data required by the stepper controller.
|
||||
// NOTE: Final rates must be computed in terms of their respective blocks.
|
||||
static void calculate_trapezoid_for_block(block_t *block, double entry_factor, double exit_factor)
|
||||
{
|
||||
block->initial_rate = ceil(block->nominal_rate*entry_factor); // (step/min)
|
||||
block->final_rate = ceil(block->nominal_rate*exit_factor); // (step/min)
|
||||
int32_t acceleration_per_minute = block->rate_delta*ACCELERATION_TICKS_PER_SECOND*60.0; // (step/min^2)
|
||||
int32_t accelerate_steps =
|
||||
ceil(estimate_acceleration_distance(block->initial_rate, block->nominal_rate, acceleration_per_minute));
|
||||
int32_t decelerate_steps =
|
||||
floor(estimate_acceleration_distance(block->nominal_rate, block->final_rate, -acceleration_per_minute));
|
||||
|
||||
|
||||
// Calculate the size of Plateau of Nominal Rate.
|
||||
int32_t plateau_steps = block->step_event_count-accelerate_steps-decelerate_steps;
|
||||
|
||||
@@ -143,132 +220,31 @@ void calculate_trapezoid_for_block(block_t *block, double entry_factor, double e
|
||||
if (plateau_steps < 0) {
|
||||
accelerate_steps = ceil(
|
||||
intersection_distance(block->initial_rate, block->final_rate, acceleration_per_minute, block->step_event_count));
|
||||
accelerate_steps = max(accelerate_steps,0); // Check limits due to numerical round-off
|
||||
accelerate_steps = min(accelerate_steps,block->step_event_count);
|
||||
plateau_steps = 0;
|
||||
}
|
||||
|
||||
block->accelerate_until = accelerate_steps;
|
||||
block->decelerate_after = accelerate_steps+plateau_steps;
|
||||
}
|
||||
}
|
||||
|
||||
// Calculates the maximum allowable speed at this point when you must be able to reach target_velocity using the
|
||||
// acceleration within the allotted distance.
|
||||
inline double max_allowable_speed(double acceleration, double target_velocity, double distance) {
|
||||
return(
|
||||
sqrt(target_velocity*target_velocity-2*acceleration*60*60*distance)
|
||||
);
|
||||
}
|
||||
|
||||
// "Junction jerk" in this context is the immediate change in speed at the junction of two blocks.
|
||||
// This method will calculate the junction jerk as the euclidean distance between the nominal
|
||||
// velocities of the respective blocks.
|
||||
inline double junction_jerk(block_t *before, block_t *after) {
|
||||
return(sqrt(
|
||||
pow(before->speed_x-after->speed_x, 2)+
|
||||
pow(before->speed_y-after->speed_y, 2)+
|
||||
pow(before->speed_z-after->speed_z, 2))
|
||||
);
|
||||
}
|
||||
|
||||
// Calculate a braking factor to reach baseline speed which is max_jerk/2, e.g. the
|
||||
// speed under which you cannot exceed max_jerk no matter what you do.
|
||||
double factor_for_safe_speed(block_t *block) {
|
||||
return(settings.max_jerk/block->nominal_speed);
|
||||
}
|
||||
|
||||
// The kernel called by planner_recalculate() when scanning the plan from last to first entry.
|
||||
void planner_reverse_pass_kernel(block_t *previous, block_t *current, block_t *next) {
|
||||
if(!current) { return; }
|
||||
|
||||
double entry_factor = 1.0;
|
||||
double exit_factor;
|
||||
if (next) {
|
||||
exit_factor = next->entry_factor;
|
||||
} else {
|
||||
exit_factor = factor_for_safe_speed(current);
|
||||
}
|
||||
|
||||
// Calculate the entry_factor for the current block.
|
||||
if (previous) {
|
||||
// Reduce speed so that junction_jerk is within the maximum allowed
|
||||
double jerk = junction_jerk(previous, current);
|
||||
if (jerk > settings.max_jerk) {
|
||||
entry_factor = (settings.max_jerk/jerk);
|
||||
}
|
||||
// If the required deceleration across the block is too rapid, reduce the entry_factor accordingly.
|
||||
if (entry_factor > exit_factor) {
|
||||
double max_entry_speed = max_allowable_speed(-settings.acceleration,current->nominal_speed*exit_factor,
|
||||
current->millimeters);
|
||||
double max_entry_factor = max_entry_speed/current->nominal_speed;
|
||||
if (max_entry_factor < entry_factor) {
|
||||
entry_factor = max_entry_factor;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
entry_factor = factor_for_safe_speed(current);
|
||||
}
|
||||
|
||||
// Store result
|
||||
current->entry_factor = entry_factor;
|
||||
}
|
||||
|
||||
// planner_recalculate() needs to go over the current plan twice. Once in reverse and once forward. This
|
||||
// implements the reverse pass.
|
||||
void planner_reverse_pass() {
|
||||
auto int8_t block_index = block_buffer_head;
|
||||
block_t *block[3] = {NULL, NULL, NULL};
|
||||
while(block_index != block_buffer_tail) {
|
||||
block_index--;
|
||||
if(block_index < 0) {
|
||||
block_index = BLOCK_BUFFER_SIZE-1;
|
||||
}
|
||||
block[2]= block[1];
|
||||
block[1]= block[0];
|
||||
block[0] = &block_buffer[block_index];
|
||||
planner_reverse_pass_kernel(block[0], block[1], block[2]);
|
||||
}
|
||||
planner_reverse_pass_kernel(NULL, block[0], block[1]);
|
||||
}
|
||||
|
||||
// The kernel called by planner_recalculate() when scanning the plan from first to last entry.
|
||||
void planner_forward_pass_kernel(block_t *previous, block_t *current, block_t *next) {
|
||||
if(!current) { return; }
|
||||
if(previous) {
|
||||
// If the previous block is an acceleration block, but it is not long enough to
|
||||
// complete the full speed change within the block, we need to adjust out entry
|
||||
// speed accordingly. Remember current->entry_factor equals the exit factor of
|
||||
// the previous block.
|
||||
if(previous->entry_factor < current->entry_factor) {
|
||||
double max_entry_speed = max_allowable_speed(-settings.acceleration,
|
||||
current->nominal_speed*previous->entry_factor, previous->millimeters);
|
||||
double max_entry_factor = max_entry_speed/current->nominal_speed;
|
||||
if (max_entry_factor < current->entry_factor) {
|
||||
current->entry_factor = max_entry_factor;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// planner_recalculate() needs to go over the current plan twice. Once in reverse and once forward. This
|
||||
// implements the forward pass.
|
||||
void planner_forward_pass() {
|
||||
int8_t block_index = block_buffer_tail;
|
||||
block_t *block[3] = {NULL, NULL, NULL};
|
||||
|
||||
while(block_index != block_buffer_head) {
|
||||
block[0] = block[1];
|
||||
block[1] = block[2];
|
||||
block[2] = &block_buffer[block_index];
|
||||
planner_forward_pass_kernel(block[0],block[1],block[2]);
|
||||
block_index = (block_index+1) % BLOCK_BUFFER_SIZE;
|
||||
}
|
||||
planner_forward_pass_kernel(block[1], block[2], NULL);
|
||||
}
|
||||
|
||||
// Recalculates the trapezoid speed profiles for all blocks in the plan according to the
|
||||
// entry_factor for each junction. Must be called by planner_recalculate() after
|
||||
// updating the blocks.
|
||||
void planner_recalculate_trapezoids() {
|
||||
int8_t block_index = block_buffer_tail;
|
||||
/* PLANNER SPEED DEFINITION
|
||||
+--------+ <- current->nominal_speed
|
||||
/ \
|
||||
current->entry_speed -> + \
|
||||
| + <- next->entry_speed
|
||||
+-------------+
|
||||
time -->
|
||||
*/
|
||||
// Recalculates the trapezoid speed profiles for flagged blocks in the plan according to the
|
||||
// entry_speed for each junction and the entry_speed of the next junction. Must be called by
|
||||
// planner_recalculate() after updating the blocks. Any recalulate flagged junction will
|
||||
// compute the two adjacent trapezoids to the junction, since the junction speed corresponds
|
||||
// to exit speed and entry speed of one another.
|
||||
static void planner_recalculate_trapezoids()
|
||||
{
|
||||
uint8_t block_index = block_buffer_tail;
|
||||
block_t *current;
|
||||
block_t *next = NULL;
|
||||
|
||||
@@ -276,71 +252,78 @@ void planner_recalculate_trapezoids() {
|
||||
current = next;
|
||||
next = &block_buffer[block_index];
|
||||
if (current) {
|
||||
calculate_trapezoid_for_block(current, current->entry_factor, next->entry_factor);
|
||||
// Recalculate if current block entry or exit junction speed has changed.
|
||||
if (current->recalculate_flag || next->recalculate_flag) {
|
||||
// NOTE: Entry and exit factors always > 0 by all previous logic operations.
|
||||
calculate_trapezoid_for_block(current, current->entry_speed/current->nominal_speed,
|
||||
next->entry_speed/current->nominal_speed);
|
||||
current->recalculate_flag = false; // Reset current only to ensure next trapezoid is computed
|
||||
}
|
||||
}
|
||||
block_index = (block_index+1) % BLOCK_BUFFER_SIZE;
|
||||
block_index = next_block_index( block_index );
|
||||
}
|
||||
calculate_trapezoid_for_block(next, next->entry_factor, factor_for_safe_speed(next));
|
||||
// Last/newest block in buffer. Exit speed is set with MINIMUM_PLANNER_SPEED. Always recalculated.
|
||||
calculate_trapezoid_for_block(next, next->entry_speed/next->nominal_speed,
|
||||
MINIMUM_PLANNER_SPEED/next->nominal_speed);
|
||||
next->recalculate_flag = false;
|
||||
}
|
||||
|
||||
// Recalculates the motion plan according to the following algorithm:
|
||||
//
|
||||
// 1. Go over every block in reverse order and calculate a junction speed reduction (i.e. block_t.entry_factor)
|
||||
// 1. Go over every block in reverse order and calculate a junction speed reduction (i.e. block_t.entry_speed)
|
||||
// so that:
|
||||
// a. The junction jerk is within the set limit
|
||||
// a. The junction speed is equal to or less than the maximum junction speed limit
|
||||
// b. No speed reduction within one block requires faster deceleration than the one, true constant
|
||||
// acceleration.
|
||||
// 2. Go over every block in chronological order and dial down junction speed reduction values if
|
||||
// a. The speed increase within one block would require faster accelleration than the one, true
|
||||
// 2. Go over every block in chronological order and dial down junction speed values if
|
||||
// a. The speed increase within one block would require faster acceleration than the one, true
|
||||
// constant acceleration.
|
||||
//
|
||||
// When these stages are complete all blocks have an entry_factor that will allow all speed changes to
|
||||
// be performed using only the one, true constant acceleration, and where no junction jerk is jerkier than
|
||||
// the set limit. Finally it will:
|
||||
// When these stages are complete all blocks have an entry speed that will allow all speed changes to
|
||||
// be performed using only the one, true constant acceleration, and where no junction speed is greater
|
||||
// than the max limit. Finally it will:
|
||||
//
|
||||
// 3. Recalculate trapezoids for all blocks.
|
||||
// 3. Recalculate trapezoids for all blocks using the recently updated junction speeds. Block trapezoids
|
||||
// with no updated junction speeds will not be recalculated and assumed ok as is.
|
||||
//
|
||||
// All planner computations are performed with doubles (float on Arduinos) to minimize numerical round-
|
||||
// off errors. Only when planned values are converted to stepper rate parameters, these are integers.
|
||||
|
||||
void planner_recalculate() {
|
||||
static void planner_recalculate()
|
||||
{
|
||||
planner_reverse_pass();
|
||||
planner_forward_pass();
|
||||
planner_recalculate_trapezoids();
|
||||
}
|
||||
|
||||
void plan_init() {
|
||||
void plan_init()
|
||||
{
|
||||
block_buffer_head = 0;
|
||||
block_buffer_tail = 0;
|
||||
plan_set_acceleration_manager_enabled(TRUE);
|
||||
clear_vector(position);
|
||||
clear_vector_double(previous_unit_vec);
|
||||
previous_nominal_speed = 0.0;
|
||||
}
|
||||
|
||||
void plan_set_acceleration_manager_enabled(int enabled) {
|
||||
if ((!!acceleration_manager_enabled) != (!!enabled)) {
|
||||
st_synchronize();
|
||||
acceleration_manager_enabled = !!enabled;
|
||||
}
|
||||
}
|
||||
|
||||
int plan_is_acceleration_manager_enabled() {
|
||||
return(acceleration_manager_enabled);
|
||||
}
|
||||
|
||||
inline void plan_discard_current_block() {
|
||||
void plan_discard_current_block()
|
||||
{
|
||||
if (block_buffer_head != block_buffer_tail) {
|
||||
block_buffer_tail = (block_buffer_tail + 1) % BLOCK_BUFFER_SIZE;
|
||||
block_buffer_tail = next_block_index( block_buffer_tail );
|
||||
}
|
||||
}
|
||||
|
||||
inline block_t *plan_get_current_block() {
|
||||
block_t *plan_get_current_block()
|
||||
{
|
||||
if (block_buffer_head == block_buffer_tail) { return(NULL); }
|
||||
return(&block_buffer[block_buffer_tail]);
|
||||
}
|
||||
|
||||
// Add a new linear movement to the buffer. steps_x, _y and _z is the absolute position in
|
||||
// mm. Microseconds specify how many microseconds the move should take to perform. To aid acceleration
|
||||
// calculation the caller must also provide the physical length of the line in millimeters.
|
||||
void plan_buffer_line(double x, double y, double z, double feed_rate, int invert_feed_rate) {
|
||||
// The target position of the tool in absolute steps
|
||||
|
||||
|
||||
// Add a new linear movement to the buffer. x, y and z is the signed, absolute target position in
|
||||
// millimeters. Feed rate specifies the speed of the motion. If feed rate is inverted, the feed
|
||||
// rate is taken to mean "frequency" and would complete the operation in 1/feed_rate minutes.
|
||||
void plan_buffer_line(double x, double y, double z, double feed_rate, uint8_t invert_feed_rate)
|
||||
{
|
||||
// Calculate target position in absolute steps
|
||||
int32_t target[3];
|
||||
target[X_AXIS] = lround(x*settings.steps_per_mm[X_AXIS]);
|
||||
@@ -348,41 +331,48 @@ void plan_buffer_line(double x, double y, double z, double feed_rate, int invert
|
||||
target[Z_AXIS] = lround(z*settings.steps_per_mm[Z_AXIS]);
|
||||
|
||||
// Calculate the buffer head after we push this byte
|
||||
int next_buffer_head = (block_buffer_head + 1) % BLOCK_BUFFER_SIZE;
|
||||
// If the buffer is full: good! That means we are well ahead of the robot.
|
||||
// Rest here until there is room in the buffer.
|
||||
uint8_t next_buffer_head = next_block_index( block_buffer_head );
|
||||
// If the buffer is full: good! That means we are well ahead of the robot.
|
||||
// Rest here until there is room in the buffer.
|
||||
while(block_buffer_tail == next_buffer_head) { sleep_mode(); }
|
||||
|
||||
// Prepare to set up new block
|
||||
block_t *block = &block_buffer[block_buffer_head];
|
||||
|
||||
// Compute direction bits for this block
|
||||
block->direction_bits = 0;
|
||||
if (target[X_AXIS] < position[X_AXIS]) { block->direction_bits |= (1<<X_DIRECTION_BIT); }
|
||||
if (target[Y_AXIS] < position[Y_AXIS]) { block->direction_bits |= (1<<Y_DIRECTION_BIT); }
|
||||
if (target[Z_AXIS] < position[Z_AXIS]) { block->direction_bits |= (1<<Z_DIRECTION_BIT); }
|
||||
|
||||
// Number of steps for each axis
|
||||
block->steps_x = labs(target[X_AXIS]-position[X_AXIS]);
|
||||
block->steps_y = labs(target[Y_AXIS]-position[Y_AXIS]);
|
||||
block->steps_z = labs(target[Z_AXIS]-position[Z_AXIS]);
|
||||
block->step_event_count = max(block->steps_x, max(block->steps_y, block->steps_z));
|
||||
|
||||
// Bail if this is a zero-length block
|
||||
if (block->step_event_count == 0) { return; };
|
||||
|
||||
double delta_x_mm = (target[X_AXIS]-position[X_AXIS])/settings.steps_per_mm[X_AXIS];
|
||||
double delta_y_mm = (target[Y_AXIS]-position[Y_AXIS])/settings.steps_per_mm[Y_AXIS];
|
||||
double delta_z_mm = (target[Z_AXIS]-position[Z_AXIS])/settings.steps_per_mm[Z_AXIS];
|
||||
block->millimeters = sqrt(square(delta_x_mm) + square(delta_y_mm) + square(delta_z_mm));
|
||||
|
||||
// Compute path vector in terms of absolute step target and current positions
|
||||
double delta_mm[3];
|
||||
delta_mm[X_AXIS] = (target[X_AXIS]-position[X_AXIS])/settings.steps_per_mm[X_AXIS];
|
||||
delta_mm[Y_AXIS] = (target[Y_AXIS]-position[Y_AXIS])/settings.steps_per_mm[Y_AXIS];
|
||||
delta_mm[Z_AXIS] = (target[Z_AXIS]-position[Z_AXIS])/settings.steps_per_mm[Z_AXIS];
|
||||
block->millimeters = sqrt(square(delta_mm[X_AXIS]) + square(delta_mm[Y_AXIS]) +
|
||||
square(delta_mm[Z_AXIS]));
|
||||
double inverse_millimeters = 1.0/block->millimeters; // Inverse millimeters to remove multiple divides
|
||||
|
||||
uint32_t microseconds;
|
||||
// Calculate speed in mm/minute for each axis. No divide by zero due to previous checks.
|
||||
// NOTE: Minimum stepper speed is limited by MINIMUM_STEPS_PER_MINUTE in stepper.c
|
||||
double inverse_minute;
|
||||
if (!invert_feed_rate) {
|
||||
microseconds = lround((block->millimeters/feed_rate)*1000000);
|
||||
inverse_minute = feed_rate * inverse_millimeters;
|
||||
} else {
|
||||
microseconds = lround(ONE_MINUTE_OF_MICROSECONDS/feed_rate);
|
||||
inverse_minute = 1.0 / feed_rate;
|
||||
}
|
||||
|
||||
// Calculate speed in mm/minute for each axis
|
||||
double multiplier = 60.0*1000000.0/microseconds;
|
||||
block->speed_x = delta_x_mm * multiplier;
|
||||
block->speed_y = delta_y_mm * multiplier;
|
||||
block->speed_z = delta_z_mm * multiplier;
|
||||
block->nominal_speed = block->millimeters * multiplier;
|
||||
block->nominal_rate = ceil(block->step_event_count * multiplier);
|
||||
block->entry_factor = 0.0;
|
||||
block->nominal_speed = block->millimeters * inverse_minute; // (mm/min) Always > 0
|
||||
block->nominal_rate = ceil(block->step_event_count * inverse_minute); // (step/min) Always > 0
|
||||
|
||||
// Compute the acceleration rate for the trapezoid generator. Depending on the slope of the line
|
||||
// average travel per step event changes. For a line along one axis the travel per step event
|
||||
@@ -390,34 +380,84 @@ void plan_buffer_line(double x, double y, double z, double feed_rate, int invert
|
||||
// axes might step for every step event. Travel per step event is then sqrt(travel_x^2+travel_y^2).
|
||||
// To generate trapezoids with contant acceleration between blocks the rate_delta must be computed
|
||||
// specifically for each line to compensate for this phenomenon:
|
||||
double travel_per_step = block->millimeters/block->step_event_count;
|
||||
block->rate_delta = ceil(
|
||||
((settings.acceleration*60.0)/(ACCELERATION_TICKS_PER_SECOND))/ // acceleration mm/sec/sec per acceleration_tick
|
||||
travel_per_step); // convert to: acceleration steps/min/acceleration_tick
|
||||
if (acceleration_manager_enabled) {
|
||||
// compute a preliminary conservative acceleration trapezoid
|
||||
double safe_speed_factor = factor_for_safe_speed(block);
|
||||
calculate_trapezoid_for_block(block, safe_speed_factor, safe_speed_factor);
|
||||
} else {
|
||||
block->initial_rate = block->nominal_rate;
|
||||
block->final_rate = block->nominal_rate;
|
||||
block->accelerate_until = 0;
|
||||
block->decelerate_after = block->step_event_count;
|
||||
block->rate_delta = 0;
|
||||
}
|
||||
// Convert universal acceleration for direction-dependent stepper rate change parameter
|
||||
block->rate_delta = ceil( block->step_event_count*inverse_millimeters *
|
||||
settings.acceleration / (60 * ACCELERATION_TICKS_PER_SECOND )); // (step/min/acceleration_tick)
|
||||
|
||||
// Compute path unit vector
|
||||
double unit_vec[3];
|
||||
|
||||
unit_vec[X_AXIS] = delta_mm[X_AXIS]*inverse_millimeters;
|
||||
unit_vec[Y_AXIS] = delta_mm[Y_AXIS]*inverse_millimeters;
|
||||
unit_vec[Z_AXIS] = delta_mm[Z_AXIS]*inverse_millimeters;
|
||||
|
||||
// Compute maximum allowable entry speed at junction by centripetal acceleration approximation.
|
||||
// Let a circle be tangent to both previous and current path line segments, where the junction
|
||||
// deviation is defined as the distance from the junction to the closest edge of the circle,
|
||||
// colinear with the circle center. The circular segment joining the two paths represents the
|
||||
// path of centripetal acceleration. Solve for max velocity based on max acceleration about the
|
||||
// radius of the circle, defined indirectly by junction deviation. This may be also viewed as
|
||||
// path width or max_jerk in the previous grbl version. This approach does not actually deviate
|
||||
// from path, but used as a robust way to compute cornering speeds, as it takes into account the
|
||||
// nonlinearities of both the junction angle and junction velocity.
|
||||
double vmax_junction = MINIMUM_PLANNER_SPEED; // Set default max junction speed
|
||||
|
||||
// Skip first block or when previous_nominal_speed is used as a flag for homing and offset cycles.
|
||||
if ((block_buffer_head != block_buffer_tail) && (previous_nominal_speed > 0.0)) {
|
||||
// Compute cosine of angle between previous and current path. (prev_unit_vec is negative)
|
||||
// NOTE: Max junction velocity is computed without sin() or acos() by trig half angle identity.
|
||||
double cos_theta = - previous_unit_vec[X_AXIS] * unit_vec[X_AXIS]
|
||||
- previous_unit_vec[Y_AXIS] * unit_vec[Y_AXIS]
|
||||
- previous_unit_vec[Z_AXIS] * unit_vec[Z_AXIS] ;
|
||||
|
||||
// Skip and use default max junction speed for 0 degree acute junction.
|
||||
if (cos_theta < 0.95) {
|
||||
vmax_junction = min(previous_nominal_speed,block->nominal_speed);
|
||||
// Skip and avoid divide by zero for straight junctions at 180 degrees. Limit to min() of nominal speeds.
|
||||
if (cos_theta > -0.95) {
|
||||
// Compute maximum junction velocity based on maximum acceleration and junction deviation
|
||||
double sin_theta_d2 = sqrt(0.5*(1.0-cos_theta)); // Trig half angle identity. Always positive.
|
||||
vmax_junction = min(vmax_junction,
|
||||
sqrt(settings.acceleration * settings.junction_deviation * sin_theta_d2/(1.0-sin_theta_d2)) );
|
||||
}
|
||||
}
|
||||
}
|
||||
block->max_entry_speed = vmax_junction;
|
||||
|
||||
// Compute direction bits for this block
|
||||
block->direction_bits = 0;
|
||||
if (target[X_AXIS] < position[X_AXIS]) { block->direction_bits |= (1<<X_DIRECTION_BIT); }
|
||||
if (target[Y_AXIS] < position[Y_AXIS]) { block->direction_bits |= (1<<Y_DIRECTION_BIT); }
|
||||
if (target[Z_AXIS] < position[Z_AXIS]) { block->direction_bits |= (1<<Z_DIRECTION_BIT); }
|
||||
// Initialize block entry speed. Compute based on deceleration to user-defined MINIMUM_PLANNER_SPEED.
|
||||
double v_allowable = max_allowable_speed(-settings.acceleration,MINIMUM_PLANNER_SPEED,block->millimeters);
|
||||
block->entry_speed = min(vmax_junction, v_allowable);
|
||||
|
||||
// Initialize planner efficiency flags
|
||||
// Set flag if block will always reach maximum junction speed regardless of entry/exit speeds.
|
||||
// If a block can de/ac-celerate from nominal speed to zero within the length of the block, then
|
||||
// the current block and next block junction speeds are guaranteed to always be at their maximum
|
||||
// junction speeds in deceleration and acceleration, respectively. This is due to how the current
|
||||
// block nominal speed limits both the current and next maximum junction speeds. Hence, in both
|
||||
// the reverse and forward planners, the corresponding block junction speed will always be at the
|
||||
// the maximum junction speed and may always be ignored for any speed reduction checks.
|
||||
if (block->nominal_speed <= v_allowable) { block->nominal_length_flag = true; }
|
||||
else { block->nominal_length_flag = false; }
|
||||
block->recalculate_flag = true; // Always calculate trapezoid for new block
|
||||
|
||||
// Update previous path unit_vector and nominal speed
|
||||
memcpy(previous_unit_vec, unit_vec, sizeof(unit_vec)); // previous_unit_vec[] = unit_vec[]
|
||||
previous_nominal_speed = block->nominal_speed;
|
||||
|
||||
// Move buffer head
|
||||
block_buffer_head = next_buffer_head;
|
||||
// Update position
|
||||
// Update position
|
||||
memcpy(position, target, sizeof(target)); // position[] = target[]
|
||||
|
||||
if (acceleration_manager_enabled) { planner_recalculate(); }
|
||||
st_wake_up();
|
||||
|
||||
planner_recalculate();
|
||||
st_cycle_start();
|
||||
}
|
||||
|
||||
// Reset the planner position vector and planner speed
|
||||
void plan_set_current_position(double x, double y, double z) {
|
||||
position[X_AXIS] = lround(x*settings.steps_per_mm[X_AXIS]);
|
||||
position[Y_AXIS] = lround(y*settings.steps_per_mm[Y_AXIS]);
|
||||
position[Z_AXIS] = lround(z*settings.steps_per_mm[Z_AXIS]);
|
||||
previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest.
|
||||
clear_vector_double(previous_unit_vec);
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user