added buffered stepping support and the rudiments of the arc-interpolator

This commit is contained in:
Simen Svale Skogsrud
2009-01-28 23:48:21 +01:00
parent 2207acdf2b
commit ac2e26fda9
9 changed files with 676 additions and 150 deletions

View File

@@ -27,6 +27,7 @@
#include <math.h>
#include <stdlib.h>
#include "nuts_bolts.h"
#include "stepper.h"
// position represents the current position of the head measured in steps
// target is the target for the current linear motion
@@ -38,7 +39,6 @@
#define MODE_ARC 2
#define MODE_DWELL 3
#define MODE_HOME 4
#define MODE_LIMIT_OVERRUN -1
#define PHASE_HOME_RETURN 0
#define PHASE_HOME_NUDGE 1
@@ -55,17 +55,15 @@ struct LinearMotionParameters {
maximum_steps; // The larges absolute step-count of any axis
};
// Parameters when mode is MODE_LINEAR
struct ArcMotionParameters {
uint32_t radius;
int16_t degrees;
int ccw;
};
struct HomeCycleParameters {
int8_t direction[3]; // The direction of travel along each axis (-1, 0 or 1)
int8_t phase; // current phase of the home cycle.
int8_t away[3]; // a vector of booleans. True for each axis that is still away.
int8_t angular_direction; // 1 = clockwise, -1 = anticlockwise
uint32_t circle_x, circle_y, target_x, target_y; // current position and target position in the
// local coordinate system of the circle where [0,0] is the
// center of the circle.
int32_t error, x2, y2; // error is always == (circle_x**2 + circle_y**2 - radius**2),
// x2 is always 2*x, y2 is always 2*y
uint8_t axis_x, axis_y; // maps the circle axes to stepper axes
int32_t target[3]; // The target position in absolute steps
};
/* The whole state of the motion-control-system in one struct. Makes the code a little bit hard to
@@ -75,57 +73,39 @@ struct HomeCycleParameters {
struct MotionControlState {
int8_t mode; // The current operation mode
int32_t position[3]; // The current position of the tool in absolute steps
int32_t update_delay_us; // Microseconds between each update in the current mode
int32_t pace; // Microseconds between each update in the current mode
union {
struct LinearMotionParameters linear; // variables used in MODE_LINEAR
struct ArcMotionParameters arc; // variables used in MODE_ARC
struct HomeCycleParameters home; // variables used in MODE_HOME
uint32_t dwell_milliseconds; // variable used in MODE_DWELL
int8_t limit_overrun_direction[3]; // variable used in MODE_LIMIT_OVERRUN
};
};
struct MotionControlState state;
int check_limit_switches();
uint8_t direction_bits; // The direction bits to be used with any upcoming step-instruction
void enable_steppers();
void disable_steppers();
void set_direction_pins(int8_t *direction);
void set_direction_bits(int8_t *direction);
inline void step_steppers(uint8_t *enabled);
void limit_overrun(uint8_t *direction);
int check_limit_switch(int axis);
inline void step_axis(uint8_t axis);
void mc_init()
{
// Initialize state variables
memset(&state, 0, sizeof(state));
// Configure directions of interface pins
STEP_DDR |= STEP_MASK;
DIRECTION_DDR |= DIRECTION_MASK;
LIMIT_DDR &= ~(LIMIT_MASK);
STEPPERS_ENABLE_DDR |= 1<<STEPPERS_ENABLE_BIT;
disable_steppers();
}
void limit_overrun(uint8_t *direction)
{
state.mode = MODE_LIMIT_OVERRUN;
memcpy(state.limit_overrun_direction, direction, sizeof(state.limit_overrun_direction));
}
void mc_dwell(uint32_t milliseconds)
{
mc_wait();
st_synchronize();
state.mode = MODE_DWELL;
state.dwell_milliseconds = milliseconds;
state.update_delay_us = 1000;
state.pace = 1000;
}
void mc_linear_motion(double x, double y, double z, float feed_rate, int invert_feed_rate)
{
mc_wait();
state.mode = MODE_LINEAR;
state.linear.target[X_AXIS] = trunc(x*X_STEPS_PER_MM);
@@ -149,19 +129,19 @@ void mc_linear_motion(double x, double y, double z, float feed_rate, int invert_
}
// Set our direction pins
set_direction_pins(state.linear.direction);
set_direction_bits(state.linear.direction);
// Calculate the microseconds we need to wait between each step to achieve the desired feed rate
if (invert_feed_rate) {
state.update_delay_us =
(feed_rate*1000000.0)/state.linear.maximum_steps;
state.pace =
(feed_rate*1000000)/state.linear.maximum_steps;
} else {
// Ask old Phytagoras how many millimeters our next move is going to take us:
float millimeters_of_travel =
sqrt(pow((X_STEPS_PER_MM*state.linear.step_count[X_AXIS]),2) +
pow((Y_STEPS_PER_MM*state.linear.step_count[Y_AXIS]),2) +
pow((Z_STEPS_PER_MM*state.linear.step_count[Z_AXIS]),2));
state.update_delay_us =
state.pace =
((millimeters_of_travel * ONE_MINUTE_OF_MICROSECONDS) / feed_rate) / state.linear.maximum_steps;
}
}
@@ -190,63 +170,132 @@ void perform_linear_motion()
if (step[X_AXIS] | step[Y_AXIS] | step[Z_AXIS]) {
step_steppers(step);
// If we trip any limit switch while moving: Abort, abort!
if (check_limit_switches()) {
limit_overrun(state.linear.direction);
}
_delay_us(state.update_delay_us);
} else {
state.mode = MODE_AT_REST;
}
}
void mc_arc(double theta, double angular_travel, double radius, uint32_t *target)
{
state.mode = MODE_ARC;
// Calculate the initial position and target position in the local coordinate system of the circle
state.arc.circle_x = round(sin(theta)*radius);
state.arc.circle_y = round(cos(theta)*radius);
state.arc.target_x = trunc(sin(theta+angular_travel)*(radius-0.5));
state.arc.target_y = trunc(cos(theta+angular_travel)*(radius-0.5));
// Determine angular direction (+1 = clockwise, -1 = counterclockwise)
state.arc.angular_direction = sign(angular_travel);
// The "error" factor is kept up to date so that it is always == (x**2+y**2-radius**2). When error
// <0 we are inside the circle, when it is >0 we are outside of the circle, and when it is 0 we
// are exactly on top of the circle.
state.arc.error = round(pow(state.arc.circle_x,2) + pow(state.arc.circle_y,2) - pow(radius,2));
// Because the error-value moves in steps of (+/-)2x+1 and (+/-)2y+1 we save a couple of multiplications
// by keeping track of the doubles of the circle coordinates at all times.
state.arc.x2 = 2*state.arc.circle_x;
state.arc.y2 = 2*state.arc.circle_y;
}
void step_arc_along_x(dx,dy)
{
uint32_t diagonal_error;
state.arc.circle_x+=dx;
state.arc.error += 1+state.arc.x2*dx;
state.arc.x2 += 2*dx;
diagonal_error = state.arc.error + 1 + state.arc.y2*dy;
if(abs(state.arc.error) < abs(diagonal_error)) {
state.arc.circle_y += dy;
state.arc.y2 += 2*dy;
state.arc.error = diagonal_error;
};
}
void step_arc_along_y(dx,dy)
{
uint32_t diagonal_error;
state.arc.circle_y+=dy;
state.arc.error += 1+state.arc.y2*dy;
state.arc.y2 += 2*dy;
diagonal_error = state.arc.error + 1 + state.arc.x2*dx;
if(abs(state.arc.error) < abs(diagonal_error)) {
state.arc.circle_x += dx;
state.arc.x2 += 2*dx;
state.arc.error = diagonal_error;
}
}
/*
Quandrants of the circle
\ 7|0 /
\ | /
6 \|/ 1 y+
---------|-----------
5 /|\ 2 y-
/ | \
x- / 4|3 \ x+ */
int quadrant(uint32_t x,uint32_t y)
{
// determine if the coordinate is in the quadrants 0,3,4 or 7
register int quad0347 = abs(x)<abs(y);
if (x<0) { // quad 4567
if (y<0) { // quad 45
return(quad0347 ? 4 : 5);
} else { // quad 67
return(quad0347 ? 7 : 6);
}
} else {
if (y<0) { // quad 23
return(quad0347 ? 3 : 2);
} else { // quad 01
return(quad0347 ? 0 : 1);
}
}
}
void perform_arc()
{
int q = quadrant(state.arc.circle_x, state.arc.circle_y);
if (state.arc.angular_direction) {
switch (q) {
case 0: while(state.arc.circle_x>state.arc.circle_y) { step_arc_along_x(1,-1); }
case 1: while(state.arc.circle_y>0) { step_arc_along_y(1,-1); }
case 2: while(state.arc.circle_y>-state.arc.circle_x) { step_arc_along_y(-1,-1); }
case 3: while(state.arc.circle_x>0) { step_arc_along_x(-1,-1); }
case 4: while(state.arc.circle_y<state.arc.circle_x) { step_arc_along_x(-1,1); }
case 5: while(state.arc.circle_y<0) { step_arc_along_y(-1,1); }
case 6: while(state.arc.circle_y<-state.arc.circle_x) { step_arc_along_y(1,1); }
case 7: while(state.arc.circle_x<0) { step_arc_along_x(1,1); }
}
} else {
switch (q) {
case 7: while(state.arc.circle_y>-state.arc.circle_x) { step_arc_along_x(-1,-1); }
case 6: while(state.arc.circle_y>0) { step_arc_along_y(-1,-1); }
case 5: while(state.arc.circle_y>state.arc.circle_x) { step_arc_along_y(1,-1); }
case 4: while(state.arc.circle_x<0) { step_arc_along_x(1,-1); }
case 3: while(state.arc.circle_y<-state.arc.circle_x) { step_arc_along_x(1,1); }
case 2: while(state.arc.circle_y<0) { step_arc_along_y(1,1); }
case 1: while(state.arc.circle_y<state.arc.circle_x) { step_arc_along_y(-1,1); }
case 0: while(state.arc.circle_x>0) { step_arc_along_x(-1,1); }
}
}
}
void mc_go_home()
{
state.mode = MODE_HOME;
memset(state.home.direction, -1, sizeof(state.home.direction)); // direction = [-1,-1,-1]
set_direction_pins(state.home.direction);
clear_vector(state.home.away);
}
void perform_go_home()
{
int axis;
if(state.home.phase == PHASE_HOME_RETURN) {
// We are running all axes in reverse until all limit switches are tripped
// Check all limit switches:
for(axis=X_AXIS; axis <= Z_AXIS; axis++) {
state.home.away[axis] |= check_limit_switch(axis);
}
// Step steppers. First retract along Z-axis. Then X and Y.
if(state.home.away[Z_AXIS]) {
step_axis(Z_AXIS);
} else {
// Check if all axes are home
if(!(state.home.away[X_AXIS] || state.home.away[Y_AXIS])) {
// All axes are home, prepare next phase: to nudge the tool carefully out of the limit switches
memset(state.home.direction, 1, sizeof(state.home.direction)); // direction = [1,1,1]
set_direction_pins(state.home.direction);
state.home.phase == PHASE_HOME_NUDGE;
return;
}
step_steppers(state.home.away);
}
} else {
for(axis=X_AXIS; axis <= Z_AXIS; axis++) {
if(check_limit_switch(axis)) {
step_axis(axis);
return;
}
}
// When this code is reached it means all axes are free of their limit-switches. Complete the cycle and rest:
clear_vector(state.position); // By definition this is location [0, 0, 0]
state.mode = MODE_AT_REST;
}
st_go_home();
clear_vector(state.position); // By definition this is location [0, 0, 0]
state.mode = MODE_AT_REST;
}
void mc_execute() {
enable_steppers();
st_set_pace(state.pace);
while(state.mode) {
switch(state.mode) {
case MODE_AT_REST: break;
@@ -254,13 +303,7 @@ void mc_execute() {
case MODE_LINEAR: perform_linear_motion();
case MODE_HOME: perform_go_home();
}
_delay_us(state.update_delay_us);
}
disable_steppers();
}
void mc_wait() {
return; // No concurrency support yet. So waiting for all to pass is moot.
}
int mc_status()
@@ -268,49 +311,22 @@ int mc_status()
return(state.mode);
}
int check_limit_switches()
{
// Dual read as crude debounce
return((LIMIT_PORT & LIMIT_MASK) | (LIMIT_PORT & LIMIT_MASK));
}
int check_limit_switch(int axis)
{
uint8_t mask = 0;
switch (axis) {
case X_AXIS: mask = 1<<X_LIMIT_BIT; break;
case Y_AXIS: mask = 1<<Y_LIMIT_BIT; break;
case Z_AXIS: mask = 1<<Z_LIMIT_BIT; break;
}
return((LIMIT_PORT&mask) || (LIMIT_PORT&mask));
}
void enable_steppers()
{
STEPPERS_ENABLE_PORT |= 1<<STEPPERS_ENABLE_BIT;
}
void disable_steppers()
{
STEPPERS_ENABLE_PORT &= ~(1<<STEPPERS_ENABLE_BIT);
}
// Set the direction pins for the stepper motors according to the provided vector.
// direction is an array of three 8 bit integers representing the direction of
// each motor. The values should be -1 (reverse), 0 or 1 (forward).
void set_direction_pins(int8_t *direction)
void set_direction_bits(int8_t *direction)
{
/* Sorry about this convoluted code! It uses the fact that bit 7 of each direction
int is set when the direction == -1, but is 0 when direction is forward. This
way we can generate the whole direction bit-mask without doing any comparisions
or branching. Fast and compact, yet practically unreadable. Sorry sorry sorry.
*/
uint8_t forward_bits = ~(
direction_bits = ~(
((direction[X_AXIS]&128)>>(7-X_DIRECTION_BIT)) |
((direction[Y_AXIS]&128)>>(7-Y_DIRECTION_BIT)) |
((direction[Z_AXIS]&128)>>(7-Z_DIRECTION_BIT))
);
DIRECTION_PORT = DIRECTION_PORT & ~(DIRECTION_MASK) | forward_bits;
}
// Step enabled steppers. Enabled should be an array of three bytes. Each byte represent one
@@ -318,21 +334,15 @@ void set_direction_pins(int8_t *direction)
// 1, and the rest to 0.
inline void step_steppers(uint8_t *enabled)
{
STEP_PORT |= enabled[X_AXIS]<<X_STEP_BIT | enabled[Y_AXIS]<<Y_STEP_BIT | enabled[Z_AXIS]<<Z_STEP_BIT;
_delay_us(5);
STEP_PORT &= ~STEP_MASK;
st_buffer_step(direction_bits | enabled[X_AXIS]<<X_STEP_BIT | enabled[Y_AXIS]<<Y_STEP_BIT | enabled[Z_AXIS]<<Z_STEP_BIT);
}
// Step only one motor
inline void step_axis(uint8_t axis)
{
uint8_t mask = 0;
switch (axis) {
case X_AXIS: mask = 1<<X_STEP_BIT; break;
case Y_AXIS: mask = 1<<Y_STEP_BIT; break;
case Z_AXIS: mask = 1<<Z_STEP_BIT; break;
case X_AXIS: st_buffer_step(direction_bits | (1<<X_STEP_BIT)); break;
case Y_AXIS: st_buffer_step(direction_bits | (1<<Y_STEP_BIT)); break;
case Z_AXIS: st_buffer_step(direction_bits | (1<<Z_STEP_BIT)); break;
}
STEP_PORT &= mask;
_delay_us(5);
STEP_PORT &= ~STEP_MASK;
}