added buffered stepping support and the rudiments of the arc-interpolator
This commit is contained in:
262
motion_control.c
262
motion_control.c
@@ -27,6 +27,7 @@
|
||||
#include <math.h>
|
||||
#include <stdlib.h>
|
||||
#include "nuts_bolts.h"
|
||||
#include "stepper.h"
|
||||
|
||||
// position represents the current position of the head measured in steps
|
||||
// target is the target for the current linear motion
|
||||
@@ -38,7 +39,6 @@
|
||||
#define MODE_ARC 2
|
||||
#define MODE_DWELL 3
|
||||
#define MODE_HOME 4
|
||||
#define MODE_LIMIT_OVERRUN -1
|
||||
|
||||
#define PHASE_HOME_RETURN 0
|
||||
#define PHASE_HOME_NUDGE 1
|
||||
@@ -55,17 +55,15 @@ struct LinearMotionParameters {
|
||||
maximum_steps; // The larges absolute step-count of any axis
|
||||
};
|
||||
|
||||
// Parameters when mode is MODE_LINEAR
|
||||
struct ArcMotionParameters {
|
||||
uint32_t radius;
|
||||
int16_t degrees;
|
||||
int ccw;
|
||||
};
|
||||
|
||||
struct HomeCycleParameters {
|
||||
int8_t direction[3]; // The direction of travel along each axis (-1, 0 or 1)
|
||||
int8_t phase; // current phase of the home cycle.
|
||||
int8_t away[3]; // a vector of booleans. True for each axis that is still away.
|
||||
int8_t angular_direction; // 1 = clockwise, -1 = anticlockwise
|
||||
uint32_t circle_x, circle_y, target_x, target_y; // current position and target position in the
|
||||
// local coordinate system of the circle where [0,0] is the
|
||||
// center of the circle.
|
||||
int32_t error, x2, y2; // error is always == (circle_x**2 + circle_y**2 - radius**2),
|
||||
// x2 is always 2*x, y2 is always 2*y
|
||||
uint8_t axis_x, axis_y; // maps the circle axes to stepper axes
|
||||
int32_t target[3]; // The target position in absolute steps
|
||||
};
|
||||
|
||||
/* The whole state of the motion-control-system in one struct. Makes the code a little bit hard to
|
||||
@@ -75,57 +73,39 @@ struct HomeCycleParameters {
|
||||
struct MotionControlState {
|
||||
int8_t mode; // The current operation mode
|
||||
int32_t position[3]; // The current position of the tool in absolute steps
|
||||
int32_t update_delay_us; // Microseconds between each update in the current mode
|
||||
int32_t pace; // Microseconds between each update in the current mode
|
||||
union {
|
||||
struct LinearMotionParameters linear; // variables used in MODE_LINEAR
|
||||
struct ArcMotionParameters arc; // variables used in MODE_ARC
|
||||
struct HomeCycleParameters home; // variables used in MODE_HOME
|
||||
uint32_t dwell_milliseconds; // variable used in MODE_DWELL
|
||||
int8_t limit_overrun_direction[3]; // variable used in MODE_LIMIT_OVERRUN
|
||||
};
|
||||
};
|
||||
struct MotionControlState state;
|
||||
|
||||
int check_limit_switches();
|
||||
uint8_t direction_bits; // The direction bits to be used with any upcoming step-instruction
|
||||
|
||||
void enable_steppers();
|
||||
void disable_steppers();
|
||||
void set_direction_pins(int8_t *direction);
|
||||
void set_direction_bits(int8_t *direction);
|
||||
inline void step_steppers(uint8_t *enabled);
|
||||
void limit_overrun(uint8_t *direction);
|
||||
int check_limit_switch(int axis);
|
||||
inline void step_axis(uint8_t axis);
|
||||
|
||||
void mc_init()
|
||||
{
|
||||
// Initialize state variables
|
||||
memset(&state, 0, sizeof(state));
|
||||
|
||||
// Configure directions of interface pins
|
||||
STEP_DDR |= STEP_MASK;
|
||||
DIRECTION_DDR |= DIRECTION_MASK;
|
||||
LIMIT_DDR &= ~(LIMIT_MASK);
|
||||
STEPPERS_ENABLE_DDR |= 1<<STEPPERS_ENABLE_BIT;
|
||||
|
||||
disable_steppers();
|
||||
}
|
||||
|
||||
void limit_overrun(uint8_t *direction)
|
||||
{
|
||||
state.mode = MODE_LIMIT_OVERRUN;
|
||||
memcpy(state.limit_overrun_direction, direction, sizeof(state.limit_overrun_direction));
|
||||
}
|
||||
|
||||
void mc_dwell(uint32_t milliseconds)
|
||||
{
|
||||
mc_wait();
|
||||
st_synchronize();
|
||||
state.mode = MODE_DWELL;
|
||||
state.dwell_milliseconds = milliseconds;
|
||||
state.update_delay_us = 1000;
|
||||
state.pace = 1000;
|
||||
}
|
||||
|
||||
void mc_linear_motion(double x, double y, double z, float feed_rate, int invert_feed_rate)
|
||||
{
|
||||
mc_wait();
|
||||
state.mode = MODE_LINEAR;
|
||||
|
||||
state.linear.target[X_AXIS] = trunc(x*X_STEPS_PER_MM);
|
||||
@@ -149,19 +129,19 @@ void mc_linear_motion(double x, double y, double z, float feed_rate, int invert_
|
||||
}
|
||||
|
||||
// Set our direction pins
|
||||
set_direction_pins(state.linear.direction);
|
||||
set_direction_bits(state.linear.direction);
|
||||
|
||||
// Calculate the microseconds we need to wait between each step to achieve the desired feed rate
|
||||
if (invert_feed_rate) {
|
||||
state.update_delay_us =
|
||||
(feed_rate*1000000.0)/state.linear.maximum_steps;
|
||||
state.pace =
|
||||
(feed_rate*1000000)/state.linear.maximum_steps;
|
||||
} else {
|
||||
// Ask old Phytagoras how many millimeters our next move is going to take us:
|
||||
float millimeters_of_travel =
|
||||
sqrt(pow((X_STEPS_PER_MM*state.linear.step_count[X_AXIS]),2) +
|
||||
pow((Y_STEPS_PER_MM*state.linear.step_count[Y_AXIS]),2) +
|
||||
pow((Z_STEPS_PER_MM*state.linear.step_count[Z_AXIS]),2));
|
||||
state.update_delay_us =
|
||||
state.pace =
|
||||
((millimeters_of_travel * ONE_MINUTE_OF_MICROSECONDS) / feed_rate) / state.linear.maximum_steps;
|
||||
}
|
||||
}
|
||||
@@ -190,63 +170,132 @@ void perform_linear_motion()
|
||||
if (step[X_AXIS] | step[Y_AXIS] | step[Z_AXIS]) {
|
||||
step_steppers(step);
|
||||
|
||||
// If we trip any limit switch while moving: Abort, abort!
|
||||
if (check_limit_switches()) {
|
||||
limit_overrun(state.linear.direction);
|
||||
}
|
||||
|
||||
_delay_us(state.update_delay_us);
|
||||
} else {
|
||||
state.mode = MODE_AT_REST;
|
||||
}
|
||||
}
|
||||
|
||||
void mc_arc(double theta, double angular_travel, double radius, uint32_t *target)
|
||||
{
|
||||
state.mode = MODE_ARC;
|
||||
// Calculate the initial position and target position in the local coordinate system of the circle
|
||||
state.arc.circle_x = round(sin(theta)*radius);
|
||||
state.arc.circle_y = round(cos(theta)*radius);
|
||||
state.arc.target_x = trunc(sin(theta+angular_travel)*(radius-0.5));
|
||||
state.arc.target_y = trunc(cos(theta+angular_travel)*(radius-0.5));
|
||||
// Determine angular direction (+1 = clockwise, -1 = counterclockwise)
|
||||
state.arc.angular_direction = sign(angular_travel);
|
||||
// The "error" factor is kept up to date so that it is always == (x**2+y**2-radius**2). When error
|
||||
// <0 we are inside the circle, when it is >0 we are outside of the circle, and when it is 0 we
|
||||
// are exactly on top of the circle.
|
||||
state.arc.error = round(pow(state.arc.circle_x,2) + pow(state.arc.circle_y,2) - pow(radius,2));
|
||||
// Because the error-value moves in steps of (+/-)2x+1 and (+/-)2y+1 we save a couple of multiplications
|
||||
// by keeping track of the doubles of the circle coordinates at all times.
|
||||
state.arc.x2 = 2*state.arc.circle_x;
|
||||
state.arc.y2 = 2*state.arc.circle_y;
|
||||
}
|
||||
|
||||
void step_arc_along_x(dx,dy)
|
||||
{
|
||||
uint32_t diagonal_error;
|
||||
state.arc.circle_x+=dx;
|
||||
state.arc.error += 1+state.arc.x2*dx;
|
||||
state.arc.x2 += 2*dx;
|
||||
diagonal_error = state.arc.error + 1 + state.arc.y2*dy;
|
||||
if(abs(state.arc.error) < abs(diagonal_error)) {
|
||||
state.arc.circle_y += dy;
|
||||
state.arc.y2 += 2*dy;
|
||||
state.arc.error = diagonal_error;
|
||||
};
|
||||
}
|
||||
|
||||
void step_arc_along_y(dx,dy)
|
||||
{
|
||||
uint32_t diagonal_error;
|
||||
state.arc.circle_y+=dy;
|
||||
state.arc.error += 1+state.arc.y2*dy;
|
||||
state.arc.y2 += 2*dy;
|
||||
diagonal_error = state.arc.error + 1 + state.arc.x2*dx;
|
||||
if(abs(state.arc.error) < abs(diagonal_error)) {
|
||||
state.arc.circle_x += dx;
|
||||
state.arc.x2 += 2*dx;
|
||||
state.arc.error = diagonal_error;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
Quandrants of the circle
|
||||
\ 7|0 /
|
||||
\ | /
|
||||
6 \|/ 1 y+
|
||||
---------|-----------
|
||||
5 /|\ 2 y-
|
||||
/ | \
|
||||
x- / 4|3 \ x+ */
|
||||
|
||||
int quadrant(uint32_t x,uint32_t y)
|
||||
{
|
||||
// determine if the coordinate is in the quadrants 0,3,4 or 7
|
||||
register int quad0347 = abs(x)<abs(y);
|
||||
|
||||
if (x<0) { // quad 4567
|
||||
if (y<0) { // quad 45
|
||||
return(quad0347 ? 4 : 5);
|
||||
} else { // quad 67
|
||||
return(quad0347 ? 7 : 6);
|
||||
}
|
||||
} else {
|
||||
if (y<0) { // quad 23
|
||||
return(quad0347 ? 3 : 2);
|
||||
} else { // quad 01
|
||||
return(quad0347 ? 0 : 1);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void perform_arc()
|
||||
{
|
||||
int q = quadrant(state.arc.circle_x, state.arc.circle_y);
|
||||
|
||||
if (state.arc.angular_direction) {
|
||||
switch (q) {
|
||||
case 0: while(state.arc.circle_x>state.arc.circle_y) { step_arc_along_x(1,-1); }
|
||||
case 1: while(state.arc.circle_y>0) { step_arc_along_y(1,-1); }
|
||||
case 2: while(state.arc.circle_y>-state.arc.circle_x) { step_arc_along_y(-1,-1); }
|
||||
case 3: while(state.arc.circle_x>0) { step_arc_along_x(-1,-1); }
|
||||
case 4: while(state.arc.circle_y<state.arc.circle_x) { step_arc_along_x(-1,1); }
|
||||
case 5: while(state.arc.circle_y<0) { step_arc_along_y(-1,1); }
|
||||
case 6: while(state.arc.circle_y<-state.arc.circle_x) { step_arc_along_y(1,1); }
|
||||
case 7: while(state.arc.circle_x<0) { step_arc_along_x(1,1); }
|
||||
}
|
||||
} else {
|
||||
switch (q) {
|
||||
case 7: while(state.arc.circle_y>-state.arc.circle_x) { step_arc_along_x(-1,-1); }
|
||||
case 6: while(state.arc.circle_y>0) { step_arc_along_y(-1,-1); }
|
||||
case 5: while(state.arc.circle_y>state.arc.circle_x) { step_arc_along_y(1,-1); }
|
||||
case 4: while(state.arc.circle_x<0) { step_arc_along_x(1,-1); }
|
||||
case 3: while(state.arc.circle_y<-state.arc.circle_x) { step_arc_along_x(1,1); }
|
||||
case 2: while(state.arc.circle_y<0) { step_arc_along_y(1,1); }
|
||||
case 1: while(state.arc.circle_y<state.arc.circle_x) { step_arc_along_y(-1,1); }
|
||||
case 0: while(state.arc.circle_x>0) { step_arc_along_x(-1,1); }
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void mc_go_home()
|
||||
{
|
||||
state.mode = MODE_HOME;
|
||||
memset(state.home.direction, -1, sizeof(state.home.direction)); // direction = [-1,-1,-1]
|
||||
set_direction_pins(state.home.direction);
|
||||
clear_vector(state.home.away);
|
||||
}
|
||||
|
||||
void perform_go_home()
|
||||
{
|
||||
int axis;
|
||||
if(state.home.phase == PHASE_HOME_RETURN) {
|
||||
// We are running all axes in reverse until all limit switches are tripped
|
||||
// Check all limit switches:
|
||||
for(axis=X_AXIS; axis <= Z_AXIS; axis++) {
|
||||
state.home.away[axis] |= check_limit_switch(axis);
|
||||
}
|
||||
// Step steppers. First retract along Z-axis. Then X and Y.
|
||||
if(state.home.away[Z_AXIS]) {
|
||||
step_axis(Z_AXIS);
|
||||
} else {
|
||||
// Check if all axes are home
|
||||
if(!(state.home.away[X_AXIS] || state.home.away[Y_AXIS])) {
|
||||
// All axes are home, prepare next phase: to nudge the tool carefully out of the limit switches
|
||||
memset(state.home.direction, 1, sizeof(state.home.direction)); // direction = [1,1,1]
|
||||
set_direction_pins(state.home.direction);
|
||||
state.home.phase == PHASE_HOME_NUDGE;
|
||||
return;
|
||||
}
|
||||
step_steppers(state.home.away);
|
||||
}
|
||||
} else {
|
||||
for(axis=X_AXIS; axis <= Z_AXIS; axis++) {
|
||||
if(check_limit_switch(axis)) {
|
||||
step_axis(axis);
|
||||
return;
|
||||
}
|
||||
}
|
||||
// When this code is reached it means all axes are free of their limit-switches. Complete the cycle and rest:
|
||||
clear_vector(state.position); // By definition this is location [0, 0, 0]
|
||||
state.mode = MODE_AT_REST;
|
||||
}
|
||||
st_go_home();
|
||||
clear_vector(state.position); // By definition this is location [0, 0, 0]
|
||||
state.mode = MODE_AT_REST;
|
||||
}
|
||||
|
||||
void mc_execute() {
|
||||
enable_steppers();
|
||||
st_set_pace(state.pace);
|
||||
while(state.mode) {
|
||||
switch(state.mode) {
|
||||
case MODE_AT_REST: break;
|
||||
@@ -254,13 +303,7 @@ void mc_execute() {
|
||||
case MODE_LINEAR: perform_linear_motion();
|
||||
case MODE_HOME: perform_go_home();
|
||||
}
|
||||
_delay_us(state.update_delay_us);
|
||||
}
|
||||
disable_steppers();
|
||||
}
|
||||
|
||||
void mc_wait() {
|
||||
return; // No concurrency support yet. So waiting for all to pass is moot.
|
||||
}
|
||||
|
||||
int mc_status()
|
||||
@@ -268,49 +311,22 @@ int mc_status()
|
||||
return(state.mode);
|
||||
}
|
||||
|
||||
int check_limit_switches()
|
||||
{
|
||||
// Dual read as crude debounce
|
||||
return((LIMIT_PORT & LIMIT_MASK) | (LIMIT_PORT & LIMIT_MASK));
|
||||
}
|
||||
|
||||
int check_limit_switch(int axis)
|
||||
{
|
||||
uint8_t mask = 0;
|
||||
switch (axis) {
|
||||
case X_AXIS: mask = 1<<X_LIMIT_BIT; break;
|
||||
case Y_AXIS: mask = 1<<Y_LIMIT_BIT; break;
|
||||
case Z_AXIS: mask = 1<<Z_LIMIT_BIT; break;
|
||||
}
|
||||
return((LIMIT_PORT&mask) || (LIMIT_PORT&mask));
|
||||
}
|
||||
|
||||
void enable_steppers()
|
||||
{
|
||||
STEPPERS_ENABLE_PORT |= 1<<STEPPERS_ENABLE_BIT;
|
||||
}
|
||||
|
||||
void disable_steppers()
|
||||
{
|
||||
STEPPERS_ENABLE_PORT &= ~(1<<STEPPERS_ENABLE_BIT);
|
||||
}
|
||||
|
||||
// Set the direction pins for the stepper motors according to the provided vector.
|
||||
// direction is an array of three 8 bit integers representing the direction of
|
||||
// each motor. The values should be -1 (reverse), 0 or 1 (forward).
|
||||
void set_direction_pins(int8_t *direction)
|
||||
void set_direction_bits(int8_t *direction)
|
||||
{
|
||||
/* Sorry about this convoluted code! It uses the fact that bit 7 of each direction
|
||||
int is set when the direction == -1, but is 0 when direction is forward. This
|
||||
way we can generate the whole direction bit-mask without doing any comparisions
|
||||
or branching. Fast and compact, yet practically unreadable. Sorry sorry sorry.
|
||||
*/
|
||||
uint8_t forward_bits = ~(
|
||||
direction_bits = ~(
|
||||
((direction[X_AXIS]&128)>>(7-X_DIRECTION_BIT)) |
|
||||
((direction[Y_AXIS]&128)>>(7-Y_DIRECTION_BIT)) |
|
||||
((direction[Z_AXIS]&128)>>(7-Z_DIRECTION_BIT))
|
||||
);
|
||||
DIRECTION_PORT = DIRECTION_PORT & ~(DIRECTION_MASK) | forward_bits;
|
||||
}
|
||||
|
||||
// Step enabled steppers. Enabled should be an array of three bytes. Each byte represent one
|
||||
@@ -318,21 +334,15 @@ void set_direction_pins(int8_t *direction)
|
||||
// 1, and the rest to 0.
|
||||
inline void step_steppers(uint8_t *enabled)
|
||||
{
|
||||
STEP_PORT |= enabled[X_AXIS]<<X_STEP_BIT | enabled[Y_AXIS]<<Y_STEP_BIT | enabled[Z_AXIS]<<Z_STEP_BIT;
|
||||
_delay_us(5);
|
||||
STEP_PORT &= ~STEP_MASK;
|
||||
st_buffer_step(direction_bits | enabled[X_AXIS]<<X_STEP_BIT | enabled[Y_AXIS]<<Y_STEP_BIT | enabled[Z_AXIS]<<Z_STEP_BIT);
|
||||
}
|
||||
|
||||
// Step only one motor
|
||||
inline void step_axis(uint8_t axis)
|
||||
{
|
||||
uint8_t mask = 0;
|
||||
switch (axis) {
|
||||
case X_AXIS: mask = 1<<X_STEP_BIT; break;
|
||||
case Y_AXIS: mask = 1<<Y_STEP_BIT; break;
|
||||
case Z_AXIS: mask = 1<<Z_STEP_BIT; break;
|
||||
case X_AXIS: st_buffer_step(direction_bits | (1<<X_STEP_BIT)); break;
|
||||
case Y_AXIS: st_buffer_step(direction_bits | (1<<Y_STEP_BIT)); break;
|
||||
case Z_AXIS: st_buffer_step(direction_bits | (1<<Z_STEP_BIT)); break;
|
||||
}
|
||||
STEP_PORT &= mask;
|
||||
_delay_us(5);
|
||||
STEP_PORT &= ~STEP_MASK;
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user