- Allowed status_message function to be called by others. This is to centralize all feedback into protocol.c. - Fixed a bug where line number words 'N' were causing the parser to error out. - Allowed homing routine feed rates to move slower than the MINIMUM_STEP_RATE parameter in config.h. - Homing performs idle lock at the end of the routine. - Stepper idle lock time will now not disable the steppers when the value is set at 255. This is accomodate users who prefer to keep their axes enabled at all times. - Moved some defines around to where they need to be.
195 lines
8.5 KiB
C
Executable File
195 lines
8.5 KiB
C
Executable File
/*
|
|
limits.c - code pertaining to limit-switches and performing the homing cycle
|
|
Part of Grbl
|
|
|
|
Copyright (c) 2009-2011 Simen Svale Skogsrud
|
|
Copyright (c) 2012 Sungeun K. Jeon
|
|
|
|
Grbl is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
Grbl is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <util/delay.h>
|
|
#include <avr/io.h>
|
|
#include <avr/interrupt.h>
|
|
#include "stepper.h"
|
|
#include "settings.h"
|
|
#include "nuts_bolts.h"
|
|
#include "config.h"
|
|
#include "spindle_control.h"
|
|
#include "motion_control.h"
|
|
#include "planner.h"
|
|
#include "protocol.h"
|
|
#include "limits.h"
|
|
|
|
#define MICROSECONDS_PER_ACCELERATION_TICK (1000000/ACCELERATION_TICKS_PER_SECOND)
|
|
|
|
void limits_init()
|
|
{
|
|
LIMIT_DDR &= ~(LIMIT_MASK); // Set as input pins
|
|
LIMIT_PORT |= (LIMIT_MASK); // Enable internal pull-up resistors. Normal high operation.
|
|
}
|
|
|
|
// Moves all specified axes in same specified direction (positive=true, negative=false)
|
|
// and at the homing rate. Homing is a special motion case, where there is only an
|
|
// acceleration followed by abrupt asynchronous stops by each axes reaching their limit
|
|
// switch independently. Instead of shoehorning homing cycles into the main stepper
|
|
// algorithm and overcomplicate things, a stripped-down, lite version of the stepper
|
|
// algorithm is written here. This also lets users hack and tune this code freely for
|
|
// their own particular needs without affecting the rest of Grbl.
|
|
// NOTE: Only the abort runtime command can interrupt this process.
|
|
static void homing_cycle(bool x_axis, bool y_axis, bool z_axis, int8_t pos_dir,
|
|
bool invert_pin, float homing_rate)
|
|
{
|
|
// Determine governing axes with finest step resolution per distance for the Bresenham
|
|
// algorithm. This solves the issue when homing multiple axes that have different
|
|
// resolutions without exceeding system acceleration setting. It doesn't have to be
|
|
// perfect since homing locates machine zero, but should create for a more consistent
|
|
// and speedy homing routine.
|
|
// NOTE: For each axes enabled, the following calculations assume they physically move
|
|
// an equal distance over each time step until they hit a limit switch, aka dogleg.
|
|
uint32_t steps[3];
|
|
clear_vector(steps);
|
|
if (x_axis) { steps[X_AXIS] = lround(settings.steps_per_mm[X_AXIS]); }
|
|
if (y_axis) { steps[Y_AXIS] = lround(settings.steps_per_mm[Y_AXIS]); }
|
|
if (z_axis) { steps[Z_AXIS] = lround(settings.steps_per_mm[Z_AXIS]); }
|
|
uint32_t step_event_count = max(steps[X_AXIS], max(steps[Y_AXIS], steps[Z_AXIS]));
|
|
|
|
// To ensure global acceleration is not exceeded, reduce the governing axes nominal rate
|
|
// by adjusting the actual axes distance traveled per step. This is the same procedure
|
|
// used in the main planner to account for distance traveled when moving multiple axes.
|
|
// NOTE: When axis acceleration independence is installed, this will be updated to move
|
|
// all axes at their maximum acceleration and rate.
|
|
float ds = step_event_count/sqrt(x_axis+y_axis+z_axis);
|
|
|
|
// Compute the adjusted step rate change with each acceleration tick. (in step/min/acceleration_tick)
|
|
uint32_t delta_rate = ceil( ds*settings.acceleration/(60*ACCELERATION_TICKS_PER_SECOND));
|
|
|
|
// Nominal and initial time increment per step. Nominal should always be greater then 3
|
|
// usec, since they are based on the same parameters as the main stepper routine. Initial
|
|
// is based on the MINIMUM_STEPS_PER_MINUTE config. Since homing feed can be very slow,
|
|
// disable acceleration when rates are below MINIMUM_STEPS_PER_MINUTE.
|
|
uint32_t dt_min = lround(1000000*60/(ds*homing_rate)); // Cruising (usec/step)
|
|
uint32_t dt = 1000000*60/MINIMUM_STEPS_PER_MINUTE; // Initial (usec/step)
|
|
if (dt > dt_min) { dt = dt_min; } // Disable acceleration for very slow rates.
|
|
|
|
// Set default out_bits.
|
|
uint8_t out_bits0 = settings.invert_mask;
|
|
if (!pos_dir) { out_bits0 ^= DIRECTION_MASK; } // Invert bits, if negative dir.
|
|
|
|
// Initialize stepping variables
|
|
int32_t counter_x = -(step_event_count >> 1); // Bresenham counters
|
|
int32_t counter_y = counter_x;
|
|
int32_t counter_z = counter_x;
|
|
uint32_t step_delay = dt-settings.pulse_microseconds; // Step delay after pulse
|
|
uint32_t step_rate = 0; // Tracks step rate. Initialized from 0 rate. (in step/min)
|
|
uint32_t trap_counter = MICROSECONDS_PER_ACCELERATION_TICK/2; // Acceleration trapezoid counter
|
|
uint8_t out_bits;
|
|
uint8_t limit_state;
|
|
for(;;) {
|
|
|
|
// Reset out bits. Both direction and step pins appropriately inverted and set.
|
|
out_bits = out_bits0;
|
|
|
|
// Get limit pin state.
|
|
limit_state = LIMIT_PIN;
|
|
if (invert_pin) { limit_state ^= LIMIT_MASK; } // If leaving switch, invert to move.
|
|
|
|
// Set step pins by Bresenham line algorithm. If limit switch reached, disable and
|
|
// flag for completion.
|
|
if (x_axis) {
|
|
counter_x += steps[X_AXIS];
|
|
if (counter_x > 0) {
|
|
if (limit_state & (1<<X_LIMIT_BIT)) { out_bits ^= (1<<X_STEP_BIT); }
|
|
else { x_axis = false; }
|
|
counter_x -= step_event_count;
|
|
}
|
|
}
|
|
if (y_axis) {
|
|
counter_y += steps[Y_AXIS];
|
|
if (counter_y > 0) {
|
|
if (limit_state & (1<<Y_LIMIT_BIT)) { out_bits ^= (1<<Y_STEP_BIT); }
|
|
else { y_axis = false; }
|
|
counter_y -= step_event_count;
|
|
}
|
|
}
|
|
if (z_axis) {
|
|
counter_z += steps[Z_AXIS];
|
|
if (counter_z > 0) {
|
|
if (limit_state & (1<<Z_LIMIT_BIT)) { out_bits ^= (1<<Z_STEP_BIT); }
|
|
else { z_axis = false; }
|
|
counter_z -= step_event_count;
|
|
}
|
|
}
|
|
|
|
// Check if we are done or for system abort
|
|
protocol_execute_runtime();
|
|
if (!(x_axis || y_axis || z_axis) || sys.abort) { return; }
|
|
|
|
// Perform step.
|
|
STEPPING_PORT = (STEPPING_PORT & ~STEP_MASK) | (out_bits & STEP_MASK);
|
|
delay_us(settings.pulse_microseconds);
|
|
STEPPING_PORT = out_bits0;
|
|
delay_us(step_delay);
|
|
|
|
// Track and set the next step delay, if required. This routine uses another Bresenham
|
|
// line algorithm to follow the constant acceleration line in the velocity and time
|
|
// domain. This is a lite version of the same routine used in the main stepper program.
|
|
if (dt > dt_min) { // Unless cruising, check for time update.
|
|
trap_counter += dt; // Track time passed since last update.
|
|
if (trap_counter > MICROSECONDS_PER_ACCELERATION_TICK) {
|
|
trap_counter -= MICROSECONDS_PER_ACCELERATION_TICK;
|
|
step_rate += delta_rate; // Increment velocity
|
|
dt = (1000000*60)/step_rate; // Compute new time increment
|
|
if (dt < dt_min) {dt = dt_min;} // If target rate reached, cruise.
|
|
step_delay = dt-settings.pulse_microseconds;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void limits_go_home()
|
|
{
|
|
plan_synchronize(); // Empty all motions in buffer.
|
|
|
|
// Enable steppers by resetting the stepper disable port
|
|
STEPPERS_DISABLE_PORT &= ~(1<<STEPPERS_DISABLE_BIT);
|
|
|
|
// Jog all axes toward home to engage their limit switches at faster homing seek rate.
|
|
homing_cycle(false, false, true, true, false, settings.homing_seek_rate); // First jog the z axis
|
|
homing_cycle(true, true, false, true, false, settings.homing_seek_rate); // Then jog the x and y axis
|
|
delay_ms(settings.homing_debounce_delay); // Delay to debounce signal
|
|
|
|
// Now in proximity of all limits. Carefully leave and approach switches in multiple cycles
|
|
// to precisely hone in on the machine zero location. Moves at slower homing feed rate.
|
|
int8_t n_cycle = N_HOMING_CYCLE;
|
|
while (n_cycle--) {
|
|
// Leave all switches to release them. After cycles complete, this is machine zero.
|
|
homing_cycle(true, true, true, false, true, settings.homing_feed_rate);
|
|
delay_ms(settings.homing_debounce_delay);
|
|
|
|
if (n_cycle > 0) {
|
|
// Re-approach all switches to re-engage them.
|
|
homing_cycle(true, true, true, true, false, settings.homing_feed_rate);
|
|
delay_ms(settings.homing_debounce_delay);
|
|
}
|
|
}
|
|
|
|
delay_ms(settings.stepper_idle_lock_time);
|
|
// Disable steppers by setting stepper disable
|
|
if (settings.stepper_idle_lock_time != 0xff) {
|
|
STEPPERS_DISABLE_PORT |= (1<<STEPPERS_DISABLE_BIT);
|
|
}
|
|
}
|