- Overhauled the stepper algorithm and planner again. This time concentrating on the decoupling of the stepper ISR completely. It is now dumb, relying on the segment generator to provide the number of steps to execute and how fast it needs to go. This freed up lots of memory as well because it made a lot tracked variables obsolete. - The segment generator now computes the velocity profile of the executing planner block on the fly in floating point math, instead of allowing the stepper algorithm to govern accelerations in the previous code. What this accomplishes is the ability and framework to (somewhat) easily install a different physics model for generating a velocity profile, i.e. s-curves. - Made some more planner enhancements and increased efficiency a bit. - The changes also did not increase the compiled size of Grbl, but decreased it slightly as well. - Cleaned up a lot of the commenting. - Still much to do, but this push works and still is missing feedholds (coming next.)
87 lines
3.8 KiB
C
87 lines
3.8 KiB
C
/*
|
|
planner.h - buffers movement commands and manages the acceleration profile plan
|
|
Part of Grbl
|
|
|
|
Copyright (c) 2011-2013 Sungeun K. Jeon
|
|
Copyright (c) 2009-2011 Simen Svale Skogsrud
|
|
|
|
Grbl is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
Grbl is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#ifndef planner_h
|
|
#define planner_h
|
|
#include "nuts_bolts.h"
|
|
|
|
// The number of linear motions that can be in the plan at any give time
|
|
#ifndef BLOCK_BUFFER_SIZE
|
|
#define BLOCK_BUFFER_SIZE 18
|
|
#endif
|
|
|
|
// This struct is used when buffering the setup for each linear movement "nominal" values are as specified in
|
|
// the source g-code and may never actually be reached if acceleration management is active.
|
|
typedef struct {
|
|
|
|
// Fields used by the bresenham algorithm for tracing the line
|
|
// NOTE: Do not change any of these values once set. The stepper algorithm uses them to execute the block correctly.
|
|
uint8_t direction_bits; // The direction bit set for this block (refers to *_DIRECTION_BIT in config.h)
|
|
int32_t steps[N_AXIS]; // Step count along each axis
|
|
int32_t step_event_count; // The maximum step axis count and number of steps required to complete this block.
|
|
|
|
// Fields used by the motion planner to manage acceleration
|
|
float entry_speed_sqr; // The current planned entry speed at block junction in (mm/min)^2
|
|
float max_entry_speed_sqr; // Maximum allowable entry speed based on the minimum of junction limit and
|
|
// neighboring nominal speeds with overrides in (mm/min)^2
|
|
float max_junction_speed_sqr; // Junction entry speed limit based on direction vectors in (mm/min)^2
|
|
float nominal_speed_sqr; // Axis-limit adjusted nominal speed for this block in (mm/min)^2
|
|
float acceleration; // Axis-limit adjusted line acceleration in (mm/min^2)
|
|
float millimeters; // The remaining distance for this block to be executed in (mm)
|
|
|
|
} plan_block_t;
|
|
|
|
|
|
// Initialize the motion plan subsystem
|
|
void plan_init();
|
|
|
|
// Add a new linear movement to the buffer. target[N_AXIS] is the signed, absolute target position
|
|
// in millimeters. Feed rate specifies the speed of the motion. If feed rate is inverted, the feed
|
|
// rate is taken to mean "frequency" and would complete the operation in 1/feed_rate minutes.
|
|
void plan_buffer_line(float *target, float feed_rate, uint8_t invert_feed_rate);
|
|
|
|
// Called when the current block is no longer needed. Discards the block and makes the memory
|
|
// availible for new blocks.
|
|
void plan_discard_current_block();
|
|
|
|
// Gets the current block. Returns NULL if buffer empty
|
|
plan_block_t *plan_get_current_block();
|
|
|
|
// Called periodically by step segment buffer. Mostly used internally by planner.
|
|
uint8_t plan_next_block_index(uint8_t block_index);
|
|
|
|
// Called by step segment buffer when computing executing block velocity profile.
|
|
float plan_get_exec_block_exit_speed();
|
|
|
|
// Reset the planner position vector (in steps)
|
|
void plan_sync_position();
|
|
|
|
// Reinitialize plan with a partially completed block
|
|
void plan_cycle_reinitialize(int32_t step_events_remaining);
|
|
|
|
// Returns the status of the block ring buffer. True, if buffer is full.
|
|
uint8_t plan_check_full_buffer();
|
|
|
|
// Block until all buffered steps are executed
|
|
void plan_synchronize();
|
|
|
|
#endif
|