feat: Add CSV logging and analysis tools for rollingsum plugin

- Add csv-file property to log frame statistics
- Create analyze_sma.py for automated CSV analysis with visualizations
- Add comprehensive ROLLINGSUM_GUIDE.md documentation
- Include debugging guide and threshold recommendations
- Uses uv for Python dependency management
This commit is contained in:
yair 2025-11-14 14:21:40 +02:00
parent ab242739f9
commit c783de425a
4 changed files with 606 additions and 1 deletions

340
ROLLINGSUM_GUIDE.md Normal file
View File

@ -0,0 +1,340 @@
# GStreamer Rolling Sum Plugin Guide
## Overview
The `rollingsum` plugin analyzes video frames in real-time by tracking the mean pixel intensity of a specific column across frames. It maintains a rolling window of these values and can drop frames that deviate significantly from the rolling mean, useful for detecting and filtering unstable or anomalous frames.
## How It Works
1. **Column Analysis**: Extracts mean pixel intensity from a specified vertical column
2. **Rolling Window**: Maintains a circular buffer of recent column means
3. **Deviation Detection**: Calculates how much each frame deviates from the rolling mean
4. **Frame Filtering**: Optionally drops frames exceeding the deviation threshold
5. **CSV Logging**: Records all frame statistics for analysis
## Plugin Properties
| Property | Type | Default | Description |
|----------|------|---------|-------------|
| `window-size` | int | 1000 | Number of frames in rolling window (1-100000) |
| `column-index` | int | 1 | Which vertical column to analyze (0-based) |
| `stride` | int | 1 | Row sampling stride (1 = every row) |
| `threshold` | double | 0.5 | Normalized deviation threshold for dropping frames (0.0-1.0) |
| `csv-file` | string | NULL | Path to CSV file for logging (NULL = no logging) |
### Understanding Normalized Deviation
- **Range**: 0.0 to 1.0
- **Calculation**: `absolute_deviation / 255.0` (for 8-bit video)
- **Meaning**: Fraction of the full pixel range
- `0.001` = deviation of ~0.255 pixel values
- `0.01` = deviation of ~2.55 pixel values
- `0.1` = deviation of ~25.5 pixel values
## Basic Usage
### Simple Pipeline
```bash
gst-launch-1.0 idsueyesrc config-file=config.ini ! \
videoconvert ! \
video/x-raw,format=GRAY8 ! \
rollingsum window-size=1000 column-index=1 threshold=0.0002 ! \
autovideosink
```
### With CSV Logging
```bash
gst-launch-1.0 idsueyesrc config-file=config.ini exposure=0.5 ! \
videoconvert ! \
video/x-raw,format=GRAY8 ! \
rollingsum window-size=1000 column-index=1 threshold=0.0002 csv-file=output.csv ! \
fakesink
```
## Debugging
### Enable Debug Output
Use the `GST_DEBUG` environment variable to see detailed plugin operation:
#### Windows PowerShell
```powershell
$env:GST_DEBUG="rollingsum:5"; gst-launch-1.0 [pipeline...]
```
#### Windows CMD
```cmd
set GST_DEBUG=rollingsum:5 && gst-launch-1.0 [pipeline...]
```
#### Linux/Mac
```bash
GST_DEBUG=rollingsum:5 gst-launch-1.0 [pipeline...]
```
### Debug Levels
| Level | Output |
|-------|--------|
| `rollingsum:1` | Errors only |
| `rollingsum:2` | Warnings |
| `rollingsum:3` | Info messages (file open/close) |
| `rollingsum:4` | Debug (caps negotiation) |
| `rollingsum:5` | Log (all frame processing) |
### Example Debug Output
```
0:00:04.029432200 DEBUG rollingsum gstrollingsum.c:436: Extracted column mean: 10.07
0:00:04.032257100 DEBUG rollingsum gstrollingsum.c:466: Frame 1: mean=10.07, rolling_mean=10.07, deviation=0.00 (normalized=0.0000)
```
**Key Fields:**
- `Frame N`: Frame number
- `mean`: Current frame's column mean
- `rolling_mean`: Average of last N frames (window-size)
- `deviation`: Absolute difference
- `normalized`: Deviation as fraction of 255
### Common Debug Scenarios
#### 1. Verify Plugin Loaded
```bash
gst-inspect-1.0 rollingsum
```
Should show plugin details. If not found, check `GST_PLUGIN_PATH`.
#### 2. Check CSV File Creation
Look for this in debug output:
```
INFO rollingsum: Opened CSV file: output.csv
```
#### 3. Monitor Frame Drops
Look for:
```
DEBUG rollingsum: Dropping frame 42: deviation 0.0005 > threshold 0.0002
```
#### 4. Verify Caps Negotiation
```
DEBUG rollingsum: set_caps
DEBUG rollingsum: Video format: GRAY8, 1224x1026
```
## CSV Analysis
### CSV Format
The output CSV contains:
```csv
frame,column_mean,rolling_mean,deviation,normalized_deviation,dropped
1,10.071150,10.071150,0.000000,0.000000,0
2,10.059454,10.065302,0.005848,0.000023,0
...
```
### Analyze Results
Use the included analysis script:
```bash
uv run analyze_sma.py output.csv
```
**Output includes:**
- Statistical summary (min/max/mean/std)
- Threshold recommendations based on percentiles
- Standard deviation-based suggestions
- Visualization plots (`output_analysis.png`)
### Interpreting Results
The analysis provides threshold recommendations:
| Percentile | Description | Use Case |
|------------|-------------|----------|
| 99th | Drops top 1% | Very conservative, catch only extreme outliers |
| 95th | Drops top 5% | Conservative, good for quality control |
| 90th | Drops top 10% | Balanced, moderate filtering |
| 75th | Drops top 25% | Aggressive, maximum quality |
## Recommended Thresholds
Based on analysis of stable camera footage:
### For General Use
```bash
# Conservative (1-2% frame drop)
threshold=0.0003
# Moderate (5-10% frame drop)
threshold=0.0002
# Aggressive (20-25% frame drop)
threshold=0.0001
```
### For Specific Scenarios
**High-speed acquisition** (minimal processing):
```bash
window-size=100 threshold=0.0005
```
**Quality-focused** (stable scenes):
```bash
window-size=1000 threshold=0.0001
```
**Real-time monitoring** (fast response):
```bash
window-size=50 threshold=0.0002
```
## Troubleshooting
### No frames being dropped (threshold too high)
**Symptom**: `dropped` column always 0 in CSV
**Solution**:
1. Run with CSV logging
2. Analyze with `uv run analyze_sma.py output.csv`
3. Use recommended threshold from 90th-99th percentile
### Too many frames dropped (threshold too low)
**Symptom**: Most frames have `dropped=1`, choppy video
**Solution**:
1. Increase threshold (try doubling current value)
2. Check if column_index is appropriate
3. Verify video is stable (not shaking/moving)
### CSV file not created
**Check**:
1. File path is writable
2. Look for "Opened CSV file" in debug output (`GST_DEBUG=rollingsum:3`)
3. Verify csv-file property is set correctly
### Column index out of range
**Symptom**:
```
WARNING rollingsum: Column index 1000 >= width 1224, using column 0
```
**Solution**: Set `column-index` to value < video width
### Inconsistent results
**Possible causes**:
1. Window size too small (< 50 frames)
2. Sampling moving/dynamic content
3. Column contains edge/artifact data
**Solutions**:
- Increase `window-size` to 500-1000
- Choose different `column-index` (avoid edges)
- Use `stride=2` or higher for faster processing
## Performance Tips
1. **Larger window = more stable** but slower to adapt to scene changes
2. **Stride > 1** reduces computation but less accurate column mean
3. **CSV logging** has minimal performance impact
4. **Debug level 5** can produce massive logs, use only when needed
## Integration Examples
### Python Script Control
```python
import subprocess
# Run pipeline with CSV logging
subprocess.run([
'gst-launch-1.0',
'idsueyesrc', 'config-file=config.ini',
'!', 'videoconvert',
'!', 'video/x-raw,format=GRAY8',
'!', 'rollingsum',
'window-size=1000',
'column-index=1',
'threshold=0.0002',
'csv-file=output.csv',
'!', 'fakesink'
])
# Analyze results
subprocess.run(['uv', 'run', 'analyze_sma.py', 'output.csv'])
```
### Adaptive Threshold
Use analysis results to set optimal threshold for next run:
```python
import pandas as pd
# Analyze previous run
df = pd.read_csv('output.csv')
recommended_threshold = df['normalized_deviation'].quantile(0.95)
print(f"Recommended threshold: {recommended_threshold:.6f}")
```
## Developer Notes
### Adding New Features
Key files:
- [`gst/rollingsum/gstrollingsum.c`](gst/rollingsum/gstrollingsum.c) - Main implementation
- [`gst/rollingsum/gstrollingsum.h`](gst/rollingsum/gstrollingsum.h) - Header/structures
- [`gst/rollingsum/CMakeLists.txt`](gst/rollingsum/CMakeLists.txt) - Build config
### Rebuild After Changes
```bash
.\build.ps1 # Windows
./build.sh # Linux
```
### Testing
```bash
# Quick test
gst-inspect-1.0 rollingsum
# Full pipeline test with debug
$env:GST_DEBUG="rollingsum:5"
gst-launch-1.0 videotestsrc ! rollingsum ! fakesink
```
## References
- [DESIGN_ROLLINGSUM.md](DESIGN_ROLLINGSUM.md) - Design document
- [analyze_sma.py](analyze_sma.py) - Analysis tool
- GStreamer documentation: https://gstreamer.freedesktop.org/documentation/
## Support
For issues or questions:
1. Enable debug output (`GST_DEBUG=rollingsum:5`)
2. Generate CSV log and analyze
3. Check this guide's troubleshooting section
4. Review debug output for errors/warnings

184
analyze_sma.py Normal file
View File

@ -0,0 +1,184 @@
#!/usr/bin/env python3
# /// script
# dependencies = [
# "pandas>=2.0.0",
# "matplotlib>=3.7.0",
# "numpy>=1.24.0",
# ]
# ///
"""
Rolling Sum Analysis Tool
Analyzes CSV output from the GStreamer rollingsum plugin
Usage: uv run analyze_sma.py [csv_file]
"""
import sys
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
from pathlib import Path
def analyze_csv(csv_file: str = "output.csv"):
"""Analyze the rolling sum CSV data and generate insights."""
# Read the CSV
try:
df = pd.read_csv(csv_file)
except FileNotFoundError:
print(f"Error: CSV file '{csv_file}' not found.")
sys.exit(1)
print("=" * 80)
print(f"ROLLING SUM ANALYSIS - {csv_file}")
print("=" * 80)
print()
# Basic statistics
print("DATASET OVERVIEW:")
print(f" Total frames: {len(df)}")
print(f" Frames dropped: {df['dropped'].sum()}")
print(f" Frames kept: {(df['dropped'] == 0).sum()}")
print(f" Drop rate: {df['dropped'].mean() * 100:.2f}%")
print()
# Column mean statistics
print("COLUMN MEAN STATISTICS:")
print(f" Min: {df['column_mean'].min():.6f}")
print(f" Max: {df['column_mean'].max():.6f}")
print(f" Range: {df['column_mean'].max() - df['column_mean'].min():.6f}")
print(f" Mean: {df['column_mean'].mean():.6f}")
print(f" Std Dev: {df['column_mean'].std():.6f}")
print()
# Deviation statistics
print("DEVIATION STATISTICS:")
print(f" Min deviation: {df['deviation'].min():.6f}")
print(f" Max deviation: {df['deviation'].max():.6f}")
print(f" Mean deviation: {df['deviation'].mean():.6f}")
print(f" Std dev of deviations: {df['deviation'].std():.6f}")
print()
# Normalized deviation statistics
print("NORMALIZED DEVIATION STATISTICS:")
print(f" Min: {df['normalized_deviation'].min():.8f}")
print(f" Max: {df['normalized_deviation'].max():.8f}")
print(f" Mean: {df['normalized_deviation'].mean():.8f}")
print(f" Median: {df['normalized_deviation'].median():.8f}")
print(f" 95th percentile: {df['normalized_deviation'].quantile(0.95):.8f}")
print(f" 99th percentile: {df['normalized_deviation'].quantile(0.99):.8f}")
print()
# Threshold recommendations
print("THRESHOLD RECOMMENDATIONS:")
print(" (Based on normalized deviation percentiles)")
print()
percentiles = [50, 75, 90, 95, 99]
for p in percentiles:
threshold = df['normalized_deviation'].quantile(p / 100)
frames_dropped = (df['normalized_deviation'] > threshold).sum()
drop_rate = (frames_dropped / len(df)) * 100
print(f" {p}th percentile: threshold={threshold:.8f}")
print(f" → Would drop {frames_dropped} frames ({drop_rate:.1f}%)")
print()
# Suggest optimal thresholds based on standard deviations
mean_norm_dev = df['normalized_deviation'].mean()
std_norm_dev = df['normalized_deviation'].std()
print("STANDARD DEVIATION-BASED THRESHOLDS:")
for n in [1, 2, 3]:
threshold = mean_norm_dev + (n * std_norm_dev)
frames_dropped = (df['normalized_deviation'] > threshold).sum()
drop_rate = (frames_dropped / len(df)) * 100
print(f" Mean + {n}σ: threshold={threshold:.8f}")
print(f" → Would drop {frames_dropped} frames ({drop_rate:.1f}%)")
print()
# Create visualizations
create_plots(df, csv_file)
print("=" * 80)
print("PLOTS SAVED:")
print(f" - {csv_file.replace('.csv', '_analysis.png')}")
print("=" * 80)
def create_plots(df: pd.DataFrame, csv_file: str):
"""Create analysis plots."""
fig, axes = plt.subplots(2, 2, figsize=(14, 10))
fig.suptitle(f'Rolling Sum Analysis - {csv_file}', fontsize=16, fontweight='bold')
# Plot 1: Column mean over time
ax1 = axes[0, 0]
ax1.plot(df['frame'], df['column_mean'], label='Column Mean', linewidth=1)
ax1.plot(df['frame'], df['rolling_mean'], label='Rolling Mean', linewidth=1, alpha=0.7)
ax1.set_xlabel('Frame')
ax1.set_ylabel('Pixel Value')
ax1.set_title('Column Mean vs Rolling Mean')
ax1.legend()
ax1.grid(True, alpha=0.3)
# Plot 2: Deviation over time
ax2 = axes[0, 1]
ax2.plot(df['frame'], df['deviation'], linewidth=1, color='orange')
ax2.axhline(y=df['deviation'].mean(), color='r', linestyle='--',
label=f'Mean: {df["deviation"].mean():.4f}')
ax2.axhline(y=df['deviation'].quantile(0.95), color='g', linestyle='--',
label=f'95th: {df["deviation"].quantile(0.95):.4f}')
ax2.set_xlabel('Frame')
ax2.set_ylabel('Absolute Deviation')
ax2.set_title('Deviation from Rolling Mean')
ax2.legend()
ax2.grid(True, alpha=0.3)
# Plot 3: Normalized deviation distribution
ax3 = axes[1, 0]
ax3.hist(df['normalized_deviation'], bins=50, edgecolor='black', alpha=0.7)
ax3.axvline(x=df['normalized_deviation'].mean(), color='r', linestyle='--',
label=f'Mean: {df["normalized_deviation"].mean():.6f}')
ax3.axvline(x=df['normalized_deviation'].median(), color='g', linestyle='--',
label=f'Median: {df["normalized_deviation"].median():.6f}')
ax3.set_xlabel('Normalized Deviation')
ax3.set_ylabel('Frequency')
ax3.set_title('Normalized Deviation Distribution')
ax3.legend()
ax3.grid(True, alpha=0.3, axis='y')
# Plot 4: Cumulative distribution
ax4 = axes[1, 1]
sorted_norm_dev = np.sort(df['normalized_deviation'])
cumulative = np.arange(1, len(sorted_norm_dev) + 1) / len(sorted_norm_dev) * 100
ax4.plot(sorted_norm_dev, cumulative, linewidth=2)
# Mark percentiles
for p in [50, 75, 90, 95, 99]:
threshold = df['normalized_deviation'].quantile(p / 100)
ax4.axvline(x=threshold, color='red', linestyle=':', alpha=0.5)
ax4.text(threshold, p, f'{p}th', rotation=90, va='bottom', ha='right', fontsize=8)
ax4.set_xlabel('Normalized Deviation')
ax4.set_ylabel('Cumulative Percentage (%)')
ax4.set_title('Cumulative Distribution Function')
ax4.grid(True, alpha=0.3)
plt.tight_layout()
# Save the plot
output_file = csv_file.replace('.csv', '_analysis.png')
plt.savefig(output_file, dpi=150, bbox_inches='tight')
print(f"\n✓ Saved analysis plot to: {output_file}\n")
if __name__ == "__main__":
csv_file = sys.argv[1] if len(sys.argv) > 1 else "output.csv"
if not Path(csv_file).exists():
print(f"Error: File '{csv_file}' not found.")
print(f"Usage: uv run analyze_sma.py [csv_file]")
sys.exit(1)
analyze_csv(csv_file)

View File

@ -38,6 +38,7 @@
#include "gstrollingsum.h" #include "gstrollingsum.h"
#include <string.h> #include <string.h>
#include <math.h> #include <math.h>
#include <stdio.h>
enum enum
{ {
@ -46,6 +47,7 @@ enum
PROP_COLUMN_INDEX, PROP_COLUMN_INDEX,
PROP_STRIDE, PROP_STRIDE,
PROP_THRESHOLD, PROP_THRESHOLD,
PROP_CSV_FILENAME,
PROP_LAST PROP_LAST
}; };
@ -53,6 +55,7 @@ enum
#define DEFAULT_PROP_COLUMN_INDEX 1 #define DEFAULT_PROP_COLUMN_INDEX 1
#define DEFAULT_PROP_STRIDE 1 #define DEFAULT_PROP_STRIDE 1
#define DEFAULT_PROP_THRESHOLD 0.5 #define DEFAULT_PROP_THRESHOLD 0.5
#define DEFAULT_PROP_CSV_FILENAME NULL
/* Supported video formats */ /* Supported video formats */
#define SUPPORTED_CAPS \ #define SUPPORTED_CAPS \
@ -108,6 +111,18 @@ gst_rolling_sum_dispose (GObject * object)
GST_DEBUG ("dispose"); GST_DEBUG ("dispose");
/* Close CSV file if open */
if (filter->csv_file) {
fclose (filter->csv_file);
filter->csv_file = NULL;
}
/* Free CSV filename */
if (filter->csv_filename) {
g_free (filter->csv_filename);
filter->csv_filename = NULL;
}
gst_rolling_sum_reset (filter); gst_rolling_sum_reset (filter);
/* chain up to the parent class */ /* chain up to the parent class */
@ -161,6 +176,13 @@ gst_rolling_sum_class_init (GstRollingSumClass * klass)
G_PARAM_STATIC_STRINGS | G_PARAM_READWRITE | G_PARAM_STATIC_STRINGS | G_PARAM_READWRITE |
GST_PARAM_MUTABLE_PLAYING)); GST_PARAM_MUTABLE_PLAYING));
g_object_class_install_property (gobject_class, PROP_CSV_FILENAME,
g_param_spec_string ("csv-file", "CSV File",
"Path to CSV file for logging frame data (NULL = no logging)",
DEFAULT_PROP_CSV_FILENAME,
G_PARAM_STATIC_STRINGS | G_PARAM_READWRITE |
GST_PARAM_MUTABLE_READY));
gst_element_class_add_pad_template (gstelement_class, gst_element_class_add_pad_template (gstelement_class,
gst_static_pad_template_get (&gst_rolling_sum_sink_template)); gst_static_pad_template_get (&gst_rolling_sum_sink_template));
gst_element_class_add_pad_template (gstelement_class, gst_element_class_add_pad_template (gstelement_class,
@ -187,6 +209,7 @@ gst_rolling_sum_init (GstRollingSum * filter)
filter->column_index = DEFAULT_PROP_COLUMN_INDEX; filter->column_index = DEFAULT_PROP_COLUMN_INDEX;
filter->stride = DEFAULT_PROP_STRIDE; filter->stride = DEFAULT_PROP_STRIDE;
filter->threshold = DEFAULT_PROP_THRESHOLD; filter->threshold = DEFAULT_PROP_THRESHOLD;
filter->csv_filename = NULL;
filter->ring_buffer = NULL; filter->ring_buffer = NULL;
filter->ring_index = 0; filter->ring_index = 0;
@ -194,6 +217,7 @@ gst_rolling_sum_init (GstRollingSum * filter)
filter->rolling_mean = 0.0; filter->rolling_mean = 0.0;
filter->rolling_sum = 0.0; filter->rolling_sum = 0.0;
filter->info_set = FALSE; filter->info_set = FALSE;
filter->csv_file = NULL;
gst_base_transform_set_in_place (GST_BASE_TRANSFORM (filter), TRUE); gst_base_transform_set_in_place (GST_BASE_TRANSFORM (filter), TRUE);
@ -228,6 +252,40 @@ gst_rolling_sum_set_property (GObject * object, guint prop_id,
case PROP_THRESHOLD: case PROP_THRESHOLD:
filter->threshold = g_value_get_double (value); filter->threshold = g_value_get_double (value);
break; break;
case PROP_CSV_FILENAME:
{
const gchar *filename = g_value_get_string (value);
/* Close old file if open */
if (filter->csv_file) {
fclose (filter->csv_file);
filter->csv_file = NULL;
}
/* Free old filename */
if (filter->csv_filename) {
g_free (filter->csv_filename);
filter->csv_filename = NULL;
}
/* Set new filename and open file */
if (filename && filename[0] != '\0') {
filter->csv_filename = g_strdup (filename);
filter->csv_file = fopen (filter->csv_filename, "w");
if (filter->csv_file) {
/* Write CSV header */
fprintf (filter->csv_file, "frame,column_mean,rolling_mean,deviation,normalized_deviation,dropped\n");
fflush (filter->csv_file);
GST_INFO_OBJECT (filter, "Opened CSV file: %s", filter->csv_filename);
} else {
GST_ERROR_OBJECT (filter, "Failed to open CSV file: %s", filter->csv_filename);
g_free (filter->csv_filename);
filter->csv_filename = NULL;
}
}
break;
}
default: default:
G_OBJECT_WARN_INVALID_PROPERTY_ID (object, prop_id, pspec); G_OBJECT_WARN_INVALID_PROPERTY_ID (object, prop_id, pspec);
break; break;
@ -255,6 +313,9 @@ gst_rolling_sum_get_property (GObject * object, guint prop_id, GValue * value,
case PROP_THRESHOLD: case PROP_THRESHOLD:
g_value_set_double (value, filter->threshold); g_value_set_double (value, filter->threshold);
break; break;
case PROP_CSV_FILENAME:
g_value_set_string (value, filter->csv_filename);
break;
default: default:
G_OBJECT_WARN_INVALID_PROPERTY_ID (object, prop_id, pspec); G_OBJECT_WARN_INVALID_PROPERTY_ID (object, prop_id, pspec);
break; break;
@ -367,8 +428,12 @@ gst_rolling_sum_transform_ip (GstBaseTransform * trans, GstBuffer * buf)
gdouble frame_mean, deviation, old_value; gdouble frame_mean, deviation, old_value;
gint effective_window_size; gint effective_window_size;
GST_DEBUG_OBJECT (filter, "transform_ip called, frame_count=%d", filter->frame_count);
/* Extract column mean from current frame */ /* Extract column mean from current frame */
frame_mean = gst_rolling_sum_extract_column_mean (filter, buf); frame_mean = gst_rolling_sum_extract_column_mean (filter, buf);
GST_DEBUG_OBJECT (filter, "Extracted column mean: %.2f", frame_mean);
/* Store in ring buffer */ /* Store in ring buffer */
old_value = filter->ring_buffer[filter->ring_index]; old_value = filter->ring_buffer[filter->ring_index];
@ -395,7 +460,7 @@ gst_rolling_sum_transform_ip (GstBaseTransform * trans, GstBuffer * buf)
/* Normalize deviation (assuming 8-bit equivalent range) */ /* Normalize deviation (assuming 8-bit equivalent range) */
gdouble normalized_deviation = deviation / 255.0; gdouble normalized_deviation = deviation / 255.0;
GST_LOG_OBJECT (filter, GST_DEBUG_OBJECT (filter,
"Frame %d: mean=%.2f, rolling_mean=%.2f, deviation=%.2f (normalized=%.4f)", "Frame %d: mean=%.2f, rolling_mean=%.2f, deviation=%.2f (normalized=%.4f)",
filter->frame_count, frame_mean, filter->rolling_mean, deviation, filter->frame_count, frame_mean, filter->rolling_mean, deviation,
normalized_deviation); normalized_deviation);
@ -404,10 +469,23 @@ gst_rolling_sum_transform_ip (GstBaseTransform * trans, GstBuffer * buf)
filter->ring_index = (filter->ring_index + 1) % filter->window_size; filter->ring_index = (filter->ring_index + 1) % filter->window_size;
/* Decision: drop or pass frame */ /* Decision: drop or pass frame */
gboolean dropped = FALSE;
if (normalized_deviation > filter->threshold) { if (normalized_deviation > filter->threshold) {
GST_DEBUG_OBJECT (filter, GST_DEBUG_OBJECT (filter,
"Dropping frame %d: deviation %.4f > threshold %.4f", "Dropping frame %d: deviation %.4f > threshold %.4f",
filter->frame_count, normalized_deviation, filter->threshold); filter->frame_count, normalized_deviation, filter->threshold);
dropped = TRUE;
}
/* Write to CSV if file is open */
if (filter->csv_file) {
fprintf (filter->csv_file, "%d,%.6f,%.6f,%.6f,%.6f,%d\n",
filter->frame_count, frame_mean, filter->rolling_mean,
deviation, normalized_deviation, dropped ? 1 : 0);
fflush (filter->csv_file);
}
if (dropped) {
return GST_BASE_TRANSFORM_FLOW_DROPPED; return GST_BASE_TRANSFORM_FLOW_DROPPED;
} }

View File

@ -22,6 +22,7 @@
#include <gst/base/gstbasetransform.h> #include <gst/base/gstbasetransform.h>
#include <gst/video/video.h> #include <gst/video/video.h>
#include <stdio.h>
G_BEGIN_DECLS G_BEGIN_DECLS
@ -54,6 +55,7 @@ struct _GstRollingSum
gint column_index; /* Which column to analyze (0-based) */ gint column_index; /* Which column to analyze (0-based) */
gint stride; /* Row sampling stride */ gint stride; /* Row sampling stride */
gdouble threshold; /* Deviation threshold for dropping frames */ gdouble threshold; /* Deviation threshold for dropping frames */
gchar *csv_filename; /* CSV output filename (NULL = no CSV) */
/* State */ /* State */
gdouble *ring_buffer; /* Circular buffer of column means */ gdouble *ring_buffer; /* Circular buffer of column means */
@ -61,6 +63,7 @@ struct _GstRollingSum
gint frame_count; /* Total frames processed */ gint frame_count; /* Total frames processed */
gdouble rolling_mean; /* Current rolling mean */ gdouble rolling_mean; /* Current rolling mean */
gdouble rolling_sum; /* Current rolling sum for efficient mean update */ gdouble rolling_sum; /* Current rolling sum for efficient mean update */
FILE *csv_file; /* CSV file handle */
/* Video format info */ /* Video format info */
GstVideoInfo video_info; GstVideoInfo video_info;