MYNT-EYE-S-SDK/src/mynteye/api/synthetic.cc

800 lines
27 KiB
C++
Raw Normal View History

2018-05-10 09:46:34 +03:00
// Copyright 2018 Slightech Co., Ltd. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
2018-10-27 16:24:04 +03:00
#include "mynteye/api/synthetic.h"
2018-08-05 18:30:06 +03:00
#include <algorithm>
#include <functional>
2018-04-27 04:58:53 +03:00
#include <stdexcept>
#include <opencv2/imgproc/imgproc.hpp>
2018-11-16 10:30:13 +02:00
#include "mynteye/logger.h"
2018-10-27 16:24:04 +03:00
#include "mynteye/api/object.h"
#include "mynteye/api/plugin.h"
#include "mynteye/api/processor.h"
#include "mynteye/api/processor/disparity_normalized_processor.h"
#include "mynteye/api/processor/disparity_processor.h"
#include "mynteye/api/processor/root_camera_processor.h"
#include "mynteye/api/processor/rectify_processor_ocv.h"
#include "mynteye/api/processor/depth_processor_ocv.h"
#include "mynteye/api/processor/points_processor_ocv.h"
#include "mynteye/api/config.h"
#ifdef WITH_CAM_MODELS
#include "mynteye/api/processor/depth_processor.h"
#include "mynteye/api/processor/points_processor.h"
#include "mynteye/api/processor/rectify_processor.h"
#endif
2018-10-27 16:24:04 +03:00
#include "mynteye/device/device.h"
2018-04-26 05:33:37 +03:00
2018-06-01 05:32:36 +03:00
#define RECTIFY_PROC_PERIOD 0
#define DISPARITY_PROC_PERIOD 0
#define DISPARITY_NORM_PROC_PERIOD 0
#define POINTS_PROC_PERIOD 0
#define DEPTH_PROC_PERIOD 0
#define ROOT_PROC_PERIOD 0
2018-06-01 05:32:36 +03:00
2018-04-26 05:33:37 +03:00
MYNTEYE_BEGIN_NAMESPACE
2018-04-27 17:35:43 +03:00
namespace {
cv::Mat frame2mat(const std::shared_ptr<device::Frame> &frame) {
if (frame->format() == Format::YUYV) {
cv::Mat img(frame->height(), frame->width(), CV_8UC2, frame->data());
cv::cvtColor(img, img, cv::COLOR_YUV2BGR_YUY2);
return img;
2018-08-06 21:29:07 +03:00
} else if (frame->format() == Format::BGR888) {
cv::Mat img(frame->height(), frame->width(), CV_8UC3, frame->data());
return img;
} else { // Format::GRAY
return cv::Mat(frame->height(), frame->width(), CV_8UC1, frame->data());
}
2018-04-27 17:35:43 +03:00
}
api::StreamData data2api(const device::StreamData &data) {
2018-10-26 10:39:34 +03:00
return {data.img, frame2mat(data.frame), data.frame, data.frame_id};
2018-04-27 17:35:43 +03:00
}
2018-06-12 17:05:47 +03:00
void process_childs(
const std::shared_ptr<Processor> &proc, const std::string &name,
const Object &obj) {
auto &&processor = find_processor<Processor>(proc, name);
for (auto child : processor->GetChilds()) {
child->Process(obj);
}
}
2018-04-27 17:35:43 +03:00
} // namespace
void Synthetic::InitCalibInfo() {
if (calib_model_ == CalibrationModel::PINHOLE) {
LOG(INFO) << "camera calib model: pinhole";
intr_left_ = api_->GetIntrinsicsBase(Stream::LEFT);
intr_right_ = api_->GetIntrinsicsBase(Stream::RIGHT);
extr_ = std::make_shared<Extrinsics>(
api_->GetExtrinsics(Stream::LEFT, Stream::RIGHT));
#ifdef WITH_CAM_MODELS
} else if (calib_model_ == CalibrationModel::KANNALA_BRANDT) {
LOG(INFO) << "camera calib model: kannala_brandt";
intr_left_ = api_->GetIntrinsicsBase(Stream::LEFT);
intr_right_ = api_->GetIntrinsicsBase(Stream::RIGHT);
extr_ = std::make_shared<Extrinsics>(
api_->GetExtrinsics(Stream::LEFT, Stream::RIGHT));
#endif
} else {
calib_default_tag_ = true;
calib_model_ = CalibrationModel::PINHOLE;
LOG(INFO) << "camera calib model: unknow ,use default pinhole data";
intr_left_ = getDefaultIntrinsics();
intr_right_ = getDefaultIntrinsics();
extr_ = getDefaultExtrinsics();
}
}
Synthetic::Synthetic(API *api, CalibrationModel calib_model)
: api_(api),
plugin_(nullptr),
calib_model_(calib_model),
calib_default_tag_(false) {
2018-04-26 05:33:37 +03:00
VLOG(2) << __func__;
2018-04-27 04:58:53 +03:00
CHECK_NOTNULL(api_);
InitCalibInfo();
InitProcessors();
InitStreamSupports();
2018-04-26 05:33:37 +03:00
}
Synthetic::~Synthetic() {
VLOG(2) << __func__;
if (processor_) {
processor_->Deactivate(true);
processor_ = nullptr;
}
2018-04-26 05:33:37 +03:00
}
void Synthetic::NotifyImageParamsChanged() {
if (!calib_default_tag_) {
intr_left_ = api_->GetIntrinsicsBase(Stream::LEFT);
intr_right_ = api_->GetIntrinsicsBase(Stream::RIGHT);
extr_ = std::make_shared<Extrinsics>(
api_->GetExtrinsics(Stream::LEFT, Stream::RIGHT));
}
if (calib_model_ == CalibrationModel::PINHOLE) {
auto &&processor = find_processor<RectifyProcessorOCV>(processor_);
if (processor) processor->ReloadImageParams(intr_left_, intr_right_, extr_);
#ifdef WITH_CAM_MODELS
} else if (calib_model_ == CalibrationModel::KANNALA_BRANDT) {
auto &&processor = find_processor<RectifyProcessor>(processor_);
if (processor) processor->ReloadImageParams(intr_left_, intr_right_, extr_);
#endif
} else {
LOG(ERROR) << "Unknow calib model type in device: "
<< calib_model_ << ", use default pinhole model";
auto &&processor = find_processor<RectifyProcessorOCV>(processor_);
if (processor) processor->ReloadImageParams(intr_left_, intr_right_, extr_);
}
}
const struct Synthetic::stream_control_t Synthetic::getControlDateWithStream(
const Stream& stream) const {
for (auto &&it : processors_) {
for (auto it_s : it->getTargetStreams()) {
if (it_s.stream == stream) {
return it_s;
}
}
}
LOG(ERROR) << "ERROR: no suited processor for stream "<< stream;
return {};
}
std::shared_ptr<Processor> Synthetic::getProcessorWithStream(
const Stream& stream) {
for (auto &&it : processors_) {
for (auto it_s : it->getTargetStreams()) {
if (it_s.stream == stream) {
return it;
}
}
}
LOG(ERROR) << "ERROR: no suited processor for stream "<< stream;
}
void Synthetic::setControlDateCallbackWithStream(
const struct stream_control_t& ctr_data) {
for (auto &&it : processors_) {
int i = 0;
for (auto it_s : it->getTargetStreams()) {
if (it_s.stream == ctr_data.stream) {
it->target_streams_[i].stream_callback = ctr_data.stream_callback;
return;
}
i++;
}
}
LOG(ERROR) << "ERROR: no suited processor for stream "<< ctr_data.stream;
}
bool Synthetic::checkControlDateWithStream(const Stream& stream) const {
for (auto &&it : processors_) {
for (auto it_s : it->getTargetStreams()) {
if (it_s.stream == stream) {
return true;
}
}
}
return false;
}
void Synthetic::EnableStreamData(const Stream &stream) {
// Activate processors of synthetic stream
auto processor = getProcessorWithStream(stream);
iterate_processor_CtoP_before(processor,
[](std::shared_ptr<Processor> proce){
auto streams = proce->getTargetStreams();
int act_tag = 0;
for (unsigned int i = 0; i < proce->getStreamsSum() ; i++) {
if (proce->target_streams_[i].enabled_mode_ == MODE_LAST) {
act_tag++;
proce->target_streams_[i].enabled_mode_ = MODE_SYNTHETIC;
}
}
if (act_tag > 0 && !proce->IsActivated()) {
// std::cout << proce->Name() << " Active now" << std::endl;
proce->Activate();
}
});
}
2018-04-27 17:35:43 +03:00
bool Synthetic::Supports(const Stream &stream) const {
return checkControlDateWithStream(stream);
2018-04-27 17:35:43 +03:00
}
Synthetic::mode_t Synthetic::SupportsMode(const Stream &stream) const {
if (checkControlDateWithStream(stream)) {
auto data = getControlDateWithStream(stream);
return data.support_mode_;
2018-04-27 04:58:53 +03:00
}
return MODE_LAST;
2018-04-27 04:58:53 +03:00
}
void Synthetic::DisableStreamData(const Stream &stream) {
auto processor = getProcessorWithStream(stream);
iterate_processor_PtoC_before(processor,
[](std::shared_ptr<Processor> proce){
auto streams = proce->getTargetStreams();
int act_tag = 0;
for (unsigned int i = 0; i < proce->getStreamsSum() ; i++) {
if (proce->target_streams_[i].enabled_mode_ == MODE_SYNTHETIC) {
act_tag++;
proce->target_streams_[i].enabled_mode_ = MODE_LAST;
}
}
if (act_tag > 0 && proce->IsActivated()) {
// std::cout << proce->Name() << "Deactive now" << std::endl;
proce->Deactivate();
}
});
}
bool Synthetic::IsStreamDataEnabled(const Stream &stream) const {
if (checkControlDateWithStream(stream)) {
auto data = getControlDateWithStream(stream);
return data.enabled_mode_ == MODE_SYNTHETIC ||
data.enabled_mode_ == MODE_NATIVE;
}
return false;
2018-04-26 09:44:47 +03:00
}
void Synthetic::SetStreamCallback(
const Stream &stream, stream_callback_t callback) {
2019-01-22 10:21:04 +02:00
stream_control_t data;
data.stream = stream;
if (callback == nullptr) {
2019-01-22 10:21:04 +02:00
data.stream_callback = nullptr;
} else {
2019-01-22 10:21:04 +02:00
data.stream_callback = callback;
}
2019-01-22 10:21:04 +02:00
setControlDateCallbackWithStream(data);
2018-04-26 09:44:47 +03:00
}
bool Synthetic::HasStreamCallback(const Stream &stream) const {
2019-01-22 10:21:04 +02:00
if (checkControlDateWithStream(stream)) {
auto data = getControlDateWithStream(stream);
if (data.stream_callback != nullptr) {
return true;
}
}
return false;
2018-04-26 09:44:47 +03:00
}
2018-04-27 17:35:43 +03:00
void Synthetic::StartVideoStreaming() {
auto &&device = api_->device();
for (unsigned int i =0; i< processors_.size(); i++) {
auto streams = processors_[i]->getTargetStreams();
for (unsigned int j =0; j< streams.size(); j++) {
if (processors_[i]->target_streams_[j].support_mode_ == MODE_NATIVE) {
auto stream = processors_[i]->target_streams_[j].stream;
device->SetStreamCallback(
2018-05-31 10:39:42 +03:00
stream,
[this, stream](const device::StreamData &data) {
2018-04-27 17:35:43 +03:00
auto &&stream_data = data2api(data);
ProcessNativeStream(stream, stream_data);
2018-04-27 17:35:43 +03:00
// Need mutex if set callback after start
if (HasStreamCallback(stream)) {
2019-01-22 10:21:04 +02:00
auto data = getControlDateWithStream(stream);
data.stream_callback(stream_data);
2018-04-27 17:35:43 +03:00
}
2018-05-31 10:39:42 +03:00
},
true);
}
2018-04-27 17:35:43 +03:00
}
}
device->Start(Source::VIDEO_STREAMING);
}
2018-04-26 09:44:47 +03:00
2018-04-27 17:35:43 +03:00
void Synthetic::StopVideoStreaming() {
auto &&device = api_->device();
for (unsigned int i =0; i< processors_.size(); i++) {
auto streams = processors_[i]->getTargetStreams();
for (unsigned int j =0; j< streams.size(); j++) {
if (processors_[i]->target_streams_[j].support_mode_ == MODE_NATIVE) {
auto stream = processors_[i]->target_streams_[j].stream;
device->SetStreamCallback(stream, nullptr);
}
2018-04-27 17:35:43 +03:00
}
}
device->Stop(Source::VIDEO_STREAMING);
}
2018-04-26 09:44:47 +03:00
2018-04-27 17:35:43 +03:00
void Synthetic::WaitForStreams() {
api_->device()->WaitForStreams();
}
2018-04-26 09:44:47 +03:00
api::StreamData Synthetic::GetStreamData(const Stream &stream) {
2018-04-27 17:35:43 +03:00
auto &&mode = GetStreamEnabledMode(stream);
if (mode == MODE_NATIVE) {
auto &&device = api_->device();
return data2api(device->GetStreamData(stream));
2018-04-27 17:35:43 +03:00
} else if (mode == MODE_SYNTHETIC) {
2019-01-22 11:29:57 +02:00
auto processor = getProcessorWithStream(stream);
auto sum = processor->getStreamsSum();
auto &&out = processor->GetOutput();
static std::shared_ptr<ObjMat2> output = nullptr;
if (sum == 1) {
if (out != nullptr) {
auto &&output = Object::Cast<ObjMat>(out);
if (output != nullptr) {
return {output->data, output->value, nullptr, output->id};
}
VLOG(2) << "Rectify not ready now";
}
2019-01-22 11:29:57 +02:00
} else if (sum == 2) {
if (out != nullptr) {
output = Object::Cast<ObjMat2>(out);
}
2019-01-22 11:29:57 +02:00
auto streams = processor->getTargetStreams();
if (output != nullptr) {
2019-01-22 11:29:57 +02:00
int num = 0;
for (auto it : streams) {
if (it.stream == stream) {
if (num == 1) {
2019-01-22 11:29:57 +02:00
return {output->first_data,
output->first,
nullptr,
output->first_id};
} else {
return {output->second_data,
output->second,
nullptr,
2018-11-05 11:50:15 +02:00
output->second_id};
2019-01-22 11:29:57 +02:00
}
}
num++;
}
}
VLOG(2) << "Rectify not ready now";
2019-01-22 11:29:57 +02:00
} else {
LOG(ERROR) << "error: invalid sum!";
}
return {}; // frame.empty() == true
2018-04-27 17:35:43 +03:00
} else {
LOG(ERROR) << "Failed to get stream data of " << stream
<< ", unsupported or disabled";
return {}; // frame.empty() == true
2018-04-27 17:35:43 +03:00
}
2018-04-26 09:44:47 +03:00
}
std::vector<api::StreamData> Synthetic::GetStreamDatas(const Stream &stream) {
2018-04-27 17:35:43 +03:00
auto &&mode = GetStreamEnabledMode(stream);
if (mode == MODE_NATIVE) {
auto &&device = api_->device();
std::vector<api::StreamData> datas;
for (auto &&data : device->GetStreamDatas(stream)) {
datas.push_back(data2api(data));
}
return datas;
} else if (mode == MODE_SYNTHETIC) {
return {GetStreamData(stream)};
2018-04-27 17:35:43 +03:00
} else {
LOG(ERROR) << "Failed to get stream data of " << stream
<< ", unsupported or disabled";
}
2018-04-26 09:44:47 +03:00
return {};
}
2018-05-08 06:12:45 +03:00
void Synthetic::SetPlugin(std::shared_ptr<Plugin> plugin) {
plugin_ = plugin;
}
2018-06-04 17:09:20 +03:00
bool Synthetic::HasPlugin() const {
return plugin_ != nullptr;
}
2018-04-27 04:58:53 +03:00
void Synthetic::InitStreamSupports() {
auto &&device = api_->device();
2018-04-27 17:35:43 +03:00
if (device->Supports(Stream::LEFT) && device->Supports(Stream::RIGHT)) {
auto processor = getProcessorWithStream(Stream::LEFT);
for (unsigned int i = 0; i< processor->target_streams_.size(); i++) {
if (processor->target_streams_[i].stream == Stream::LEFT) {
processor->target_streams_[i].support_mode_ = MODE_NATIVE;
}
if (processor->target_streams_[i].stream == Stream::RIGHT) {
processor->target_streams_[i].support_mode_ = MODE_NATIVE;
}
}
2018-04-27 17:35:43 +03:00
std::vector<Stream> stream_chain{
Stream::LEFT_RECTIFIED, Stream::RIGHT_RECTIFIED,
Stream::DISPARITY, Stream::DISPARITY_NORMALIZED,
Stream::POINTS, Stream::DEPTH};
for (auto &&stream : stream_chain) {
auto processor = getProcessorWithStream(stream);
for (unsigned int i = 0; i< processor->target_streams_.size(); i++) {
if (processor->target_streams_[i].stream == stream) {
if (device->Supports(stream)) {
processor->target_streams_[i].support_mode_ = MODE_NATIVE;
processor->target_streams_[i].enabled_mode_ = MODE_NATIVE;
} else {
processor->target_streams_[i].support_mode_ = MODE_SYNTHETIC;
}
}
2018-04-27 17:35:43 +03:00
}
}
}
2018-04-27 04:58:53 +03:00
}
2018-04-27 17:35:43 +03:00
Synthetic::mode_t Synthetic::GetStreamEnabledMode(const Stream &stream) const {
if (checkControlDateWithStream(stream)) {
auto data = getControlDateWithStream(stream);
return data.enabled_mode_;
2018-04-27 17:35:43 +03:00
}
return MODE_LAST;
2018-04-27 17:35:43 +03:00
}
bool Synthetic::IsStreamEnabledNative(const Stream &stream) const {
return GetStreamEnabledMode(stream) == MODE_NATIVE;
}
bool Synthetic::IsStreamEnabledSynthetic(const Stream &stream) const {
return GetStreamEnabledMode(stream) == MODE_SYNTHETIC;
}
void Synthetic::InitProcessors() {
std::shared_ptr<Processor> rectify_processor = nullptr;
#ifdef WITH_CAM_MODELS
std::shared_ptr<RectifyProcessor> rectify_processor_imp = nullptr;
#endif
cv::Mat Q;
if (calib_model_ == CalibrationModel::PINHOLE) {
auto &&rectify_processor_ocv =
std::make_shared<RectifyProcessorOCV>(intr_left_, intr_right_, extr_,
RECTIFY_PROC_PERIOD);
Q = rectify_processor_ocv->Q;
2019-02-13 10:10:54 +02:00
rectify_processor = rectify_processor_ocv;
#ifdef WITH_CAM_MODELS
} else if (calib_model_ == CalibrationModel::KANNALA_BRANDT) {
rectify_processor_imp =
std::make_shared<RectifyProcessor>(intr_left_, intr_right_, extr_,
RECTIFY_PROC_PERIOD);
rectify_processor = rectify_processor_imp;
#endif
} else {
LOG(ERROR) << "Unknow calib model type in device: "
<< calib_model_ << ", use default pinhole model";
auto &&rectify_processor_ocv =
std::make_shared<RectifyProcessorOCV>(intr_left_, intr_right_, extr_,
RECTIFY_PROC_PERIOD);
rectify_processor = rectify_processor_ocv;
}
2018-06-01 05:32:36 +03:00
auto &&disparity_processor =
std::make_shared<DisparityProcessor>(DisparityComputingMethod::SGBM,
2019-01-14 14:08:14 +02:00
DISPARITY_PROC_PERIOD);
auto &&disparitynormalized_processor =
2018-06-01 05:32:36 +03:00
std::make_shared<DisparityNormalizedProcessor>(
DISPARITY_NORM_PROC_PERIOD);
std::shared_ptr<Processor> points_processor = nullptr;
if (calib_model_ == CalibrationModel::PINHOLE) {
points_processor = std::make_shared<PointsProcessorOCV>(
Q, POINTS_PROC_PERIOD);
#ifdef WITH_CAM_MODELS
} else if (calib_model_ == CalibrationModel::KANNALA_BRANDT) {
points_processor = std::make_shared<PointsProcessor>(
rectify_processor_imp -> getCalibInfoPair(),
POINTS_PROC_PERIOD);
#endif
} else {
points_processor = std::make_shared<PointsProcessorOCV>(
Q, POINTS_PROC_PERIOD);
}
std::shared_ptr<Processor> depth_processor = nullptr;
if (calib_model_ == CalibrationModel::PINHOLE) {
depth_processor = std::make_shared<DepthProcessorOCV>(DEPTH_PROC_PERIOD);
#ifdef WITH_CAM_MODELS
} else if (calib_model_ == CalibrationModel::KANNALA_BRANDT) {
depth_processor = std::make_shared<DepthProcessor>(
rectify_processor_imp -> getCalibInfoPair(),
DEPTH_PROC_PERIOD);
#endif
} else {
depth_processor = std::make_shared<DepthProcessorOCV>(DEPTH_PROC_PERIOD);
}
auto root_processor =
std::make_shared<RootProcessor>(ROOT_PROC_PERIOD);
root_processor->AddChild(rectify_processor);
2019-01-22 10:21:04 +02:00
rectify_processor->addTargetStreams(
{Stream::LEFT_RECTIFIED, Mode::MODE_LAST, Mode::MODE_LAST, nullptr});
rectify_processor->addTargetStreams(
{Stream::RIGHT_RECTIFIED, Mode::MODE_LAST, Mode::MODE_LAST, nullptr});
disparity_processor->addTargetStreams(
{Stream::DISPARITY, Mode::MODE_LAST, Mode::MODE_LAST, nullptr});
disparitynormalized_processor->addTargetStreams(
{Stream::DISPARITY_NORMALIZED, Mode::MODE_LAST, Mode::MODE_LAST, nullptr});
points_processor->addTargetStreams(
{Stream::POINTS, Mode::MODE_LAST, Mode::MODE_LAST, nullptr});
depth_processor->addTargetStreams(
{Stream::DEPTH, Mode::MODE_LAST, Mode::MODE_LAST, nullptr});
root_processor->addTargetStreams(
{Stream::LEFT, Mode::MODE_NATIVE, Mode::MODE_NATIVE, nullptr});
root_processor->addTargetStreams(
{Stream::RIGHT, Mode::MODE_NATIVE, Mode::MODE_NATIVE, nullptr});
processors_.push_back(root_processor);
processors_.push_back(rectify_processor);
processors_.push_back(disparity_processor);
processors_.push_back(disparitynormalized_processor);
processors_.push_back(points_processor);
processors_.push_back(depth_processor);
using namespace std::placeholders; // NOLINT
rectify_processor->SetProcessCallback(
std::bind(&Synthetic::OnRectifyProcess, this, _1, _2, _3));
disparity_processor->SetProcessCallback(
std::bind(&Synthetic::OnDisparityProcess, this, _1, _2, _3));
disparitynormalized_processor->SetProcessCallback(
std::bind(&Synthetic::OnDisparityNormalizedProcess, this, _1, _2, _3));
points_processor->SetProcessCallback(
std::bind(&Synthetic::OnPointsProcess, this, _1, _2, _3));
depth_processor->SetProcessCallback(
std::bind(&Synthetic::OnDepthProcess, this, _1, _2, _3));
rectify_processor->SetPostProcessCallback(
std::bind(&Synthetic::OnRectifyPostProcess, this, _1));
disparity_processor->SetPostProcessCallback(
std::bind(&Synthetic::OnDisparityPostProcess, this, _1));
disparitynormalized_processor->SetPostProcessCallback(
std::bind(&Synthetic::OnDisparityNormalizedPostProcess, this, _1));
points_processor->SetPostProcessCallback(
std::bind(&Synthetic::OnPointsPostProcess, this, _1));
depth_processor->SetPostProcessCallback(
std::bind(&Synthetic::OnDepthPostProcess, this, _1));
if (calib_model_ == CalibrationModel::PINHOLE) {
// PINHOLE
rectify_processor->AddChild(disparity_processor);
disparity_processor->AddChild(disparitynormalized_processor);
disparity_processor->AddChild(points_processor);
points_processor->AddChild(depth_processor);
} else if (calib_model_ == CalibrationModel::KANNALA_BRANDT) {
// KANNALA_BRANDT
rectify_processor->AddChild(disparity_processor);
disparity_processor->AddChild(disparitynormalized_processor);
disparity_processor->AddChild(depth_processor);
depth_processor->AddChild(points_processor);
} else {
// UNKNOW
LOG(ERROR) << "Unknow calib model type in device: "
<< calib_model_;
}
processor_ = rectify_processor;
}
void Synthetic::ProcessNativeStream(
const Stream &stream, const api::StreamData &data) {
2018-06-12 17:05:47 +03:00
if (stream == Stream::LEFT || stream == Stream::RIGHT) {
static api::StreamData left_data, right_data;
if (stream == Stream::LEFT) {
left_data = data;
} else if (stream == Stream::RIGHT) {
right_data = data;
}
if (left_data.img && right_data.img &&
left_data.img->frame_id == right_data.img->frame_id) {
std::shared_ptr<Processor> processor = nullptr;
if (calib_model_ == CalibrationModel::PINHOLE) {
processor = find_processor<RectifyProcessorOCV>(processor_);
#ifdef WITH_CAM_MODELS
} else if (calib_model_ == CalibrationModel::KANNALA_BRANDT) {
processor = find_processor<RectifyProcessor>(processor_);
#endif
} else {
LOG(ERROR) << "Unknow calib model type in device: "
<< calib_model_ << ", use default pinhole model";
processor = find_processor<RectifyProcessorOCV>(processor_);
}
2018-11-05 11:50:15 +02:00
processor->Process(ObjMat2{
left_data.frame, left_data.frame_id, left_data.img,
right_data.frame, right_data.frame_id, right_data.img});
2018-06-12 17:05:47 +03:00
}
return;
2018-06-12 17:05:47 +03:00
}
2018-06-12 17:05:47 +03:00
if (stream == Stream::LEFT_RECTIFIED || stream == Stream::RIGHT_RECTIFIED) {
static api::StreamData left_rect_data, right_rect_data;
if (stream == Stream::LEFT_RECTIFIED) {
left_rect_data = data;
} else if (stream == Stream::RIGHT_RECTIFIED) {
right_rect_data = data;
}
if (left_rect_data.img && right_rect_data.img &&
left_rect_data.img->frame_id == right_rect_data.img->frame_id) {
std::string name = RectifyProcessorOCV::NAME;
if (calib_model_ == CalibrationModel::PINHOLE) {
name = RectifyProcessorOCV::NAME;
#ifdef WITH_CAM_MODELS
} else if (calib_model_ == CalibrationModel::KANNALA_BRANDT) {
name = RectifyProcessor::NAME;
#endif
}
2018-06-12 17:05:47 +03:00
process_childs(
processor_, name, ObjMat2{
2018-11-05 11:50:15 +02:00
left_rect_data.frame, left_rect_data.frame_id, left_rect_data.img,
right_rect_data.frame, right_rect_data.frame_id,
right_rect_data.img});
}
return;
2018-06-12 17:05:47 +03:00
}
switch (stream) {
case Stream::DISPARITY: {
2018-10-26 10:39:34 +03:00
process_childs(processor_, DisparityProcessor::NAME,
2018-11-05 11:50:15 +02:00
ObjMat{data.frame, data.frame_id, data.img});
} break;
case Stream::DISPARITY_NORMALIZED: {
2018-10-26 10:39:34 +03:00
process_childs(processor_, DisparityNormalizedProcessor::NAME,
2018-11-05 11:50:15 +02:00
ObjMat{data.frame, data.frame_id, data.img});
} break;
case Stream::POINTS: {
if (calib_model_ == CalibrationModel::PINHOLE) {
// PINHOLE
process_childs(processor_, PointsProcessorOCV::NAME,
ObjMat{data.frame, data.frame_id, data.img});
#ifdef WITH_CAM_MODELS
} else if (calib_model_ == CalibrationModel::KANNALA_BRANDT) {
// KANNALA_BRANDT
process_childs(processor_, PointsProcessor::NAME,
ObjMat{data.frame, data.frame_id, data.img});
#endif
} else {
// UNKNOW
LOG(ERROR) << "Unknow calib model type in device: "
<< calib_model_;
}
} break;
case Stream::DEPTH: {
if (calib_model_ == CalibrationModel::PINHOLE) {
// PINHOLE
process_childs(processor_, DepthProcessorOCV::NAME,
ObjMat{data.frame, data.frame_id, data.img});
#ifdef WITH_CAM_MODELS
} else if (calib_model_ == CalibrationModel::KANNALA_BRANDT) {
// KANNALA_BRANDT
process_childs(processor_, DepthProcessor::NAME,
ObjMat{data.frame, data.frame_id, data.img});
#endif
} else {
// UNKNOW
LOG(ERROR) << "Unknow calib model type in device: "
<< calib_model_;
}
} break;
default:
break;
2018-04-27 17:35:43 +03:00
}
}
bool Synthetic::OnRectifyProcess(
Object *const in, Object *const out,
std::shared_ptr<Processor> const parent) {
2018-09-11 05:19:25 +03:00
MYNTEYE_UNUSED(parent)
2018-05-08 06:12:45 +03:00
if (plugin_ && plugin_->OnRectifyProcess(in, out)) {
return true;
}
return GetStreamEnabledMode(Stream::LEFT_RECTIFIED) != MODE_SYNTHETIC;
// && GetStreamEnabledMode(Stream::RIGHT_RECTIFIED) != MODE_SYNTHETIC
}
bool Synthetic::OnDisparityProcess(
Object *const in, Object *const out,
std::shared_ptr<Processor> const parent) {
2018-09-11 05:19:25 +03:00
MYNTEYE_UNUSED(parent)
2018-05-08 06:12:45 +03:00
if (plugin_ && plugin_->OnDisparityProcess(in, out)) {
return true;
}
return GetStreamEnabledMode(Stream::DISPARITY) != MODE_SYNTHETIC;
}
bool Synthetic::OnDisparityNormalizedProcess(
Object *const in, Object *const out,
std::shared_ptr<Processor> const parent) {
2018-09-11 05:19:25 +03:00
MYNTEYE_UNUSED(parent)
2018-05-08 06:12:45 +03:00
if (plugin_ && plugin_->OnDisparityNormalizedProcess(in, out)) {
return true;
}
return GetStreamEnabledMode(Stream::DISPARITY_NORMALIZED) != MODE_SYNTHETIC;
}
bool Synthetic::OnPointsProcess(
Object *const in, Object *const out,
std::shared_ptr<Processor> const parent) {
2018-09-11 05:19:25 +03:00
MYNTEYE_UNUSED(parent)
2018-05-08 06:12:45 +03:00
if (plugin_ && plugin_->OnPointsProcess(in, out)) {
return true;
}
return GetStreamEnabledMode(Stream::POINTS) != MODE_SYNTHETIC;
}
bool Synthetic::OnDepthProcess(
Object *const in, Object *const out,
std::shared_ptr<Processor> const parent) {
2018-09-11 05:19:25 +03:00
MYNTEYE_UNUSED(parent)
2018-05-08 06:12:45 +03:00
if (plugin_ && plugin_->OnDepthProcess(in, out)) {
return true;
}
return GetStreamEnabledMode(Stream::DEPTH) != MODE_SYNTHETIC;
}
void Synthetic::OnRectifyPostProcess(Object *const out) {
const ObjMat2 *output = Object::Cast<ObjMat2>(out);
if (HasStreamCallback(Stream::LEFT_RECTIFIED)) {
2019-01-22 10:21:04 +02:00
auto data = getControlDateWithStream(Stream::LEFT_RECTIFIED);
data.stream_callback(
2018-11-05 11:50:15 +02:00
{output->first_data, output->first, nullptr, output->first_id});
}
if (HasStreamCallback(Stream::RIGHT_RECTIFIED)) {
2019-01-22 10:21:04 +02:00
auto data = getControlDateWithStream(Stream::RIGHT_RECTIFIED);
data.stream_callback(
2018-11-05 11:50:15 +02:00
{output->second_data, output->second, nullptr, output->second_id});
}
}
void Synthetic::OnDisparityPostProcess(Object *const out) {
const ObjMat *output = Object::Cast<ObjMat>(out);
if (HasStreamCallback(Stream::DISPARITY)) {
2019-01-22 10:21:04 +02:00
auto data = getControlDateWithStream(Stream::DISPARITY);
data.stream_callback(
2018-11-05 11:50:15 +02:00
{output->data, output->value, nullptr, output->id});
}
}
void Synthetic::OnDisparityNormalizedPostProcess(Object *const out) {
const ObjMat *output = Object::Cast<ObjMat>(out);
if (HasStreamCallback(Stream::DISPARITY_NORMALIZED)) {
2019-01-22 10:21:04 +02:00
auto data = getControlDateWithStream(Stream::DISPARITY_NORMALIZED);
data.stream_callback(
2018-11-05 11:50:15 +02:00
{output->data, output->value, nullptr, output->id});
}
}
void Synthetic::OnPointsPostProcess(Object *const out) {
const ObjMat *output = Object::Cast<ObjMat>(out);
if (HasStreamCallback(Stream::POINTS)) {
2019-01-22 10:21:04 +02:00
auto data = getControlDateWithStream(Stream::POINTS);
data.stream_callback(
2018-11-05 11:50:15 +02:00
{output->data, output->value, nullptr, output->id});
}
}
void Synthetic::OnDepthPostProcess(Object *const out) {
const ObjMat *output = Object::Cast<ObjMat>(out);
if (HasStreamCallback(Stream::DEPTH)) {
2019-01-22 10:21:04 +02:00
auto data = getControlDateWithStream(Stream::DEPTH);
data.stream_callback(
2018-11-05 11:50:15 +02:00
{output->data, output->value, nullptr, output->id});
}
}
void Synthetic::SetDisparityComputingMethodType(
const DisparityComputingMethod &MethodType) {
if (checkControlDateWithStream(Stream::LEFT_RECTIFIED)) {
auto processor = find_processor<DisparityProcessor>(processor_);
if (processor)
processor->SetDisparityComputingMethodType(MethodType);
return;
}
LOG(ERROR) << "ERROR: no suited processor for disparity computing.";
}
2018-04-26 05:33:37 +03:00
MYNTEYE_END_NAMESPACE