add code in uvc-wmf.cc

This commit is contained in:
kalman 2018-05-05 16:27:05 +08:00
parent cd28fa58d3
commit 8d017f5e2d
2 changed files with 698 additions and 116 deletions

View File

@ -1,116 +1,694 @@
#include "uvc/uvc.h" // NOLINT
#include <glog/logging.h>
MYNTEYE_BEGIN_NAMESPACE
namespace uvc {
struct context {
context() {
VLOG(2) << __func__;
}
~context() {
VLOG(2) << __func__;
}
};
struct device {
const std::shared_ptr<context> parent;
int vid, pid;
device(std::shared_ptr<context> parent) : parent(parent) {
VLOG(2) << __func__;
}
~device() {
VLOG(2) << __func__;
}
};
std::shared_ptr<context> create_context() {
return std::make_shared<context>();
}
std::vector<std::shared_ptr<device>> query_devices(
std::shared_ptr<context> context) {
std::vector<std::shared_ptr<device>> devices;
UNUSED(context)
return devices;
}
int get_vendor_id(const device &device) {
return device.vid;
}
int get_product_id(const device &device) {
return device.pid;
}
std::string get_name(const device &device) {
UNUSED(device)
return "";
}
std::string get_video_name(const device &device) {
UNUSED(device)
return "";
}
bool pu_control_range(
const device &device, Option option, int32_t *min, int32_t *max,
int32_t *def) {
UNUSED(device)
UNUSED(option)
UNUSED(min)
UNUSED(max)
UNUSED(def)
return false;
}
bool pu_control_query(
const device &device, Option option, pu_query query, int32_t *value) {
UNUSED(device)
UNUSED(option)
UNUSED(query)
UNUSED(value)
return false;
}
bool xu_control_query(
const device &device, const xu &xu, uint8_t selector, xu_query query,
uint16_t size, uint8_t *data) {
UNUSED(device)
UNUSED(xu)
UNUSED(selector)
UNUSED(query)
UNUSED(size)
UNUSED(data)
return false;
}
void set_device_mode(
device &device, int width, int height, int fourcc, int fps, // NOLINT
video_channel_callback callback) {
UNUSED(device)
UNUSED(width)
UNUSED(height)
UNUSED(fourcc)
UNUSED(fps)
UNUSED(callback)
}
void start_streaming(device &device, int num_transfer_bufs) { // NOLINT
UNUSED(device)
UNUSED(num_transfer_bufs)
}
void stop_streaming(device &device) { // NOLINT
UNUSED(device)
}
} // namespace uvc
MYNTEYE_END_NAMESPACE
#include "uvc/uvc.h" // NOLINT
#include <glog/logging.h>
#include <chrono>
#include <iostream>
#include <windows.h>
#include <usbioctl.h>
#include <sstream>
#include "uvc.h"
#include <Shlwapi.h> // For QISearch, etc.
#include <mfapi.h> // For MFStartup, etc.
#include <mfidl.h> // For MF_DEVSOURCE_*, etc.
#include <mfreadwrite.h> // MFCreateSourceReaderFromMediaSource
#include <mferror.h>
#pragma comment(lib, "Shlwapi.lib")
#pragma comment(lib, "mf.lib")
#pragma comment(lib, "mfplat.lib")
#pragma comment(lib, "mfreadwrite.lib")
#pragma comment(lib, "mfuuid.lib")
#pragma comment(lib, "setupapi.lib")
#pragma comment(lib, "winusb.lib")
#include <uuids.h>
#include <vidcap.h>
#include <ksmedia.h>
#include <ksproxy.h>
#include <Cfgmgr32.h>
#pragma comment(lib, "cfgmgr32.lib")
#include <SetupAPI.h>
#include <WinUsb.h>
#include <functional>
#include <thread>
#include <chrono>
#include <algorithm>
#include <regex>
#include <map>
#include <strsafe.h>
MYNTEYE_BEGIN_NAMESPACE
namespace uvc {
const std::map<uint32_t, uint32_t> fourcc_map = { { 0x56595559, 0x32595559 } ,{ 0x59555956, 0x59555932 }}; /* 'VYUY' => '2YUY','YUYV' => 'YUY2'. */
#define LOG_ERROR(severity, str) \
do { \
LOG(severity) << str << " error " << errno << ", " << strerror(errno); \
} while (0)
struct throw_error {
throw_error() = default;
explicit throw_error(const std::string &s) {
ss << s;
}
~throw_error() noexcept(false) {
throw std::runtime_error(ss.str());
// throw device_error(ss.str());
}
template<class T>
throw_error &operator<<(const T &val) {
ss << val;
return *this;
}
std::ostringstream ss;
};
template<class T> class com_ptr
{
T * p;
void ref(T * new_p)
{
if(p == new_p) return;
unref();
p = new_p;
if(p) p->AddRef();
}
void unref()
{
if(p)
{
p->Release();
p = nullptr;
}
}
public:
com_ptr() : p() {}
com_ptr(T * p) : com_ptr() { ref(p); }
com_ptr(const com_ptr & r) : com_ptr(r.p) {}
~com_ptr() { unref(); }
operator T * () const { return p; }
T & operator * () const { return *p; }
T * operator -> () const { return p; }
T ** operator & () { unref(); return &p; }
com_ptr & operator = (const com_ptr & r) { ref(r.p); return *this; }
};
static std::string win_to_utf(const WCHAR * s)
{
int len = WideCharToMultiByte(CP_UTF8, 0, s, -1, nullptr, 0, NULL, NULL);
if(len == 0) throw_error() << "WideCharToMultiByte(...) returned 0 and GetLastError() is " << GetLastError();
std::string buffer(len-1, ' ');
len = WideCharToMultiByte(CP_UTF8, 0, s, -1, &buffer[0], (int)buffer.size()+1, NULL, NULL);
if(len == 0) throw_error() << "WideCharToMultiByte(...) returned 0 and GetLastError() is " << GetLastError();
return buffer;
}
static void check(const char *call, HRESULT hr) {
if (FAILED(hr)) {
std::cout << call << "(...) returned 0x" << std::hex << (uint32_t)hr << std::endl;
throw_error() << call << "(...) returned 0x" << std::hex << (uint32_t)hr;
}
std::cout << call << " SUCCESSED " << std::endl;
}
std::vector<std::string> tokenize(std::string string, char separator)
{
std::vector<std::string> tokens;
std::string::size_type i1 = 0;
while(true)
{
auto i2 = string.find(separator, i1);
if(i2 == std::string::npos)
{
tokens.push_back(string.substr(i1));
return tokens;
}
tokens.push_back(string.substr(i1, i2-i1));
i1 = i2+1;
}
}
bool parse_usb_path(int & vid, int & pid, int & mi, std::string & unique_id, const std::string & path)
{
auto name = path;
std::transform(begin(name), end(name), begin(name), ::tolower);
auto tokens = tokenize(name, '#');
if(tokens.size() < 1 || tokens[0] != R"(\\?\usb)") return false; // Not a USB device
if(tokens.size() < 3)
{
//LOG_ERROR("malformed usb device path: " + name);
return false;
}
auto ids = tokenize(tokens[1], '&');
if(ids[0].size() != 8 || ids[0].substr(0,4) != "vid_" || !(std::istringstream(ids[0].substr(4,4)) >> std::hex >> vid))
{
//LOG_ERROR("malformed vid string: " + tokens[1]);
return false;
}
if(ids[1].size() != 8 || ids[1].substr(0,4) != "pid_" || !(std::istringstream(ids[1].substr(4,4)) >> std::hex >> pid))
{
//LOG_ERROR("malformed pid string: " + tokens[1]);
return false;
}
if(ids[2].size() != 5 || ids[2].substr(0,3) != "mi_" || !(std::istringstream(ids[2].substr(3,2)) >> mi))
{
//LOG_ERROR("malformed mi string: " + tokens[1]);
return false;
}
ids = tokenize(tokens[2], '&');
if(ids.size() < 2)
{
//LOG_ERROR("malformed id string: " + tokens[2]);
return false;
}
unique_id = ids[1];
return true;
}
bool parse_usb_path_from_device_id(int & vid, int & pid, int & mi, std::string & unique_id, const std::string & device_id)
{
auto name = device_id;
std::transform(begin(name), end(name), begin(name), ::tolower);
auto tokens = tokenize(name, '\\');
if (tokens.size() < 1 || tokens[0] != R"(usb)") return false; // Not a USB device
auto ids = tokenize(tokens[1], '&');
if (ids[0].size() != 8 || ids[0].substr(0, 4) != "vid_" || !(std::istringstream(ids[0].substr(4, 4)) >> std::hex >> vid))
{
//LOG_ERROR("malformed vid string: " + tokens[1]);
return false;
}
if (ids[1].size() != 8 || ids[1].substr(0, 4) != "pid_" || !(std::istringstream(ids[1].substr(4, 4)) >> std::hex >> pid))
{
//LOG_ERROR("malformed pid string: " + tokens[1]);
return false;
}
if (ids[2].size() != 5 || ids[2].substr(0, 3) != "mi_" || !(std::istringstream(ids[2].substr(3, 2)) >> mi))
{
//LOG_ERROR("malformed mi string: " + tokens[1]);
return false;
}
ids = tokenize(tokens[2], '&');
if (ids.size() < 2)
{
//LOG_ERROR("malformed id string: " + tokens[2]);
return false;
}
unique_id = ids[1];
return true;
}
struct context
{
context()
{
CoInitializeEx(NULL, COINIT_APARTMENTTHREADED);
std::this_thread::sleep_for(std::chrono::milliseconds(100));
MFStartup(MF_VERSION, MFSTARTUP_NOSOCKET);
}
~context()
{
MFShutdown();
CoUninitialize();
}
};
class reader_callback : public IMFSourceReaderCallback
{
std::weak_ptr<device> owner; // The device holds a reference to us, so use weak_ptr to prevent a cycle
ULONG ref_count;
volatile bool streaming = false;
public:
reader_callback(std::weak_ptr<device> owner) : owner(owner), ref_count() {}
bool is_streaming() const { return streaming; }
void on_start() { streaming = true; }
#pragma warning( push )
#pragma warning( disable: 4838 )
// Implement IUnknown
HRESULT STDMETHODCALLTYPE QueryInterface(REFIID riid, void ** ppvObject) override
{
static const QITAB table[] = {QITABENT(reader_callback, IUnknown), QITABENT(reader_callback, IMFSourceReaderCallback), {0}};
return QISearch(this, table, riid, ppvObject);
}
#pragma warning( pop )
ULONG STDMETHODCALLTYPE AddRef() override { return InterlockedIncrement(&ref_count); }
ULONG STDMETHODCALLTYPE Release() override
{
ULONG count = InterlockedDecrement(&ref_count);
if(count == 0) delete this;
return count;
}
// Implement IMFSourceReaderCallback
HRESULT STDMETHODCALLTYPE OnReadSample(HRESULT hrStatus, DWORD dwStreamIndex, DWORD dwStreamFlags, LONGLONG llTimestamp, IMFSample * sample) override;
HRESULT STDMETHODCALLTYPE OnFlush(DWORD dwStreamIndex) override { streaming = false; return S_OK; }
HRESULT STDMETHODCALLTYPE OnEvent(DWORD dwStreamIndex, IMFMediaEvent *pEvent) override { return S_OK; }
};
struct device {
const std::shared_ptr<context> parent;
int vid, pid;
const std::string unique_id;
std::string name;
com_ptr<reader_callback> reader_callback;
com_ptr<IMFActivate> mf_activate;
com_ptr<IMFMediaSource> mf_media_source;
com_ptr<IAMCameraControl> am_camera_control;
com_ptr<IAMVideoProcAmp> am_video_proc_amp;
std::map<int, com_ptr<IKsControl>> ks_controls;
com_ptr<IMFSourceReader> mf_source_reader;
video_channel_callback callback = nullptr;
device(std::shared_ptr<context> parent, int vid, int pid, std::string unique_id, std::string name) : parent(move(parent)), vid(vid), pid(pid), name(name)
{
}
~device() { stop_streaming(); }
IKsControl * get_ks_control(const uvc::xu & xu) {
auto it = ks_controls.find(xu.node);
if(it != end(ks_controls)) return it->second;
get_media_source();
// Attempt to retrieve IKsControl
com_ptr<IKsTopologyInfo> ks_topology_info = NULL;
check("QueryInterface", mf_media_source->QueryInterface(__uuidof(IKsTopologyInfo), (void **)&ks_topology_info));
GUID node_type;
check("get_NodeType", ks_topology_info->get_NodeType(xu.node, &node_type));
std::cout << "node_type" << node_type.Data1 << "," << node_type.Data2 << "," <<node_type.Data3 << "," << node_type.Data4 << "," <<std::endl;
//const GUID KSNODETYPE_DEV_SPECIFIC_LOCAL{0x6BDD1FC6, 0X810F, 0x11D0, {0xBE, 0xC7 ,0x08, 0x00, 0x2B, 0xE2, 0x09, 0x2F}};
//if(node_type != KSNODETYPE_DEV_SPECIFIC_LOCAL) throw_error() << "Invalid extension unit node ID: " << xu.node;
com_ptr<IUnknown> unknown;
check("CreateNodeInstance", ks_topology_info->CreateNodeInstance(xu.node, IID_IUnknown, (LPVOID *)&unknown));
com_ptr<IKsControl> ks_control;
check("QueryInterface", unknown->QueryInterface(__uuidof(IKsControl), (void **)&ks_control));
VLOG(2) << "Obtained KS control node" << xu.node;
return ks_controls[xu.node] = ks_control;
}
void start_streaming()
{
if(mf_source_reader)
{
reader_callback->on_start();
check("IMFSourceReader::ReadSample", mf_source_reader->ReadSample(MF_SOURCE_READER_FIRST_VIDEO_STREAM, 0, NULL, NULL, NULL, NULL));
}
}
void stop_streaming()
{
if(mf_source_reader) mf_source_reader->Flush(MF_SOURCE_READER_FIRST_VIDEO_STREAM);
while(true)
{
bool is_streaming = reader_callback->is_streaming();
if(is_streaming) std::this_thread::sleep_for(std::chrono::milliseconds(10));
else break;
}
mf_source_reader = nullptr;
am_camera_control = nullptr;
am_video_proc_amp = nullptr;
ks_controls.clear();
if(mf_media_source)
{
mf_media_source = nullptr;
check("IMFActivate::ShutdownObject", mf_activate->ShutdownObject());
}
callback = {};
}
com_ptr<IMFMediaSource> get_media_source()
{
if(!mf_media_source)
{
check("IMFActivate::ActivateObject", mf_activate->ActivateObject(__uuidof(IMFMediaSource), (void **)&mf_media_source));
if (mf_media_source)
{
check("IMFMediaSource::QueryInterface", mf_media_source->QueryInterface(__uuidof(IAMCameraControl), (void **)&am_camera_control));
if (SUCCEEDED(mf_media_source->QueryInterface(__uuidof(IAMVideoProcAmp), (void **)&am_video_proc_amp)));
}
else throw_error() << "Invalid media source";
}
return mf_media_source;
}
};
HRESULT reader_callback::OnReadSample(HRESULT hrStatus, DWORD dwStreamIndex, DWORD dwStreamFlags, LONGLONG llTimestamp, IMFSample * sample)
{
if(auto owner_ptr = owner.lock())
{
if(sample)
{
std::cout << "sample is not null" << std::endl;
com_ptr<IMFMediaBuffer> buffer = NULL;
if(SUCCEEDED(sample->GetBufferByIndex(0, &buffer)))
{
std::cout << "SUCCEEDED(sample->GetBufferByIndex(0, &buffer))" << std::endl;
BYTE * byte_buffer; DWORD max_length, current_length;
if(SUCCEEDED(buffer->Lock(&byte_buffer, &max_length, &current_length)))
{
auto continuation = [buffer, this]()
{
buffer->Unlock();
};
owner_ptr->callback(byte_buffer);
std::cout << "owner_ptr->callback(byte_buffer);" << std::endl;
}
}
}
if (auto owner_ptr_new = owner.lock())
{
auto hr = owner_ptr_new->mf_source_reader->ReadSample(MF_SOURCE_READER_FIRST_VIDEO_STREAM, 0, NULL, NULL, NULL, NULL);
switch (hr)
{
case S_OK: break;
case MF_E_INVALIDREQUEST: LOG_ERROR(WARNING,"ReadSample returned MF_E_INVALIDREQUEST"); break;
case MF_E_INVALIDSTREAMNUMBER: LOG_ERROR(WARNING,"ReadSample returned MF_E_INVALIDSTREAMNUMBER"); break;
case MF_E_NOTACCEPTING: LOG_ERROR(WARNING,"ReadSample returned MF_E_NOTACCEPTING"); break;
case E_INVALIDARG: LOG_ERROR(WARNING,"ReadSample returned E_INVALIDARG"); break;
case MF_E_VIDEO_RECORDING_DEVICE_INVALIDATED: LOG_ERROR(WARNING,"ReadSample returned MF_E_VIDEO_RECORDING_DEVICE_INVALIDATED"); break;
default: LOG_ERROR(WARNING,"ReadSample returned HRESULT " << std::hex << (uint32_t)hr); break;
}
if (hr != S_OK) streaming = false;
}
}
return S_OK;
}
std::shared_ptr<context> create_context() {
return std::make_shared<context>();
}
std::vector<std::shared_ptr<device>> query_devices(
std::shared_ptr<context> context) {
IMFAttributes *pAttributes = NULL;
check("MFCreateAttributes", MFCreateAttributes(&pAttributes, 1));
check("IMFAttributes::SetGUID",pAttributes->SetGUID(MF_DEVSOURCE_ATTRIBUTE_SOURCE_TYPE,MF_DEVSOURCE_ATTRIBUTE_SOURCE_TYPE_VIDCAP_GUID));
IMFActivate **ppDevices;
UINT32 numDevices;
check("MFEnumDeviceSources",MFEnumDeviceSources(pAttributes, &ppDevices, &numDevices));
std::vector<std::shared_ptr<device>> devices;
for (UINT32 i = 0; i < numDevices; ++i) {
com_ptr<IMFActivate> pDevice;
*&pDevice = ppDevices[i];
WCHAR *wchar_dev_name = NULL;
WCHAR *wchar_name = NULL;
UINT32 length;
pDevice->GetAllocatedString(
MF_DEVSOURCE_ATTRIBUTE_SOURCE_TYPE_VIDCAP_SYMBOLIC_LINK, &wchar_dev_name,
&length);
auto dev_name = win_to_utf(wchar_dev_name);
CoTaskMemFree(wchar_dev_name);
pDevice->GetAllocatedString(MF_DEVSOURCE_ATTRIBUTE_FRIENDLY_NAME, &wchar_name, &length);
auto name = win_to_utf(wchar_name); // Device description name
CoTaskMemFree(wchar_name);
int vid, pid, mi; std::string unique_id;
if (!parse_usb_path(vid, pid, mi, unique_id, dev_name)) continue;
std::shared_ptr<device> dev;
for(auto & d : devices)
{
if(d->vid == vid && d->pid == pid && d->unique_id == unique_id)
dev = d;
}
if(!dev)
{
try {
dev = std::make_shared<device>(context, vid, pid, unique_id, name);
devices.push_back(dev);
} catch (const std::exception &e) {
VLOG(2) << "Not a USB video device: " << e.what();
}
}
dev->reader_callback = new reader_callback(dev);
dev->mf_activate = pDevice;
dev->vid = vid;
dev->pid = pid;
}
CoTaskMemFree(ppDevices);
return devices;
}
int get_vendor_id(const device &device) {
return device.vid;
}
int get_product_id(const device &device) {
return device.pid;
}
std::string get_name(const device &device) {
return device.name;
}
std::string get_video_name(const device &device) {
return device.name;
}
static long get_cid(Option option) {
switch (option) {
case Option::GAIN:
return VideoProcAmp_Gain;
case Option::BRIGHTNESS:
return VideoProcAmp_Brightness;
case Option::CONTRAST:
return VideoProcAmp_Contrast;
default:
LOG(FATAL) << "No VideoProcAmp cid for " << option;
}
}
bool pu_control_range(
const device &device, Option option, int32_t *min, int32_t *max,
int32_t *def) {
const_cast<uvc::device &>(device).get_media_source();
long minVal=0, maxVal=0, steppingDelta=0, defVal=0, capsFlag=0;
check("IAMVideoProcAmp::GetRange", const_cast<uvc::device &>(device).am_video_proc_amp->GetRange(get_cid(option), &minVal, &maxVal, &steppingDelta, &defVal, &capsFlag));
if(min) *min = static_cast<int>(minVal);
if(max) *max = static_cast<int>(maxVal);
if(def) *def = static_cast<int>(defVal);
return true;
}
void get_pu_control(const device &device, long property, int32_t *value) {
long data, flags=0;
check("IAMVideoProcAmp::Get", const_cast<uvc::device &>(device).am_video_proc_amp->Get(property, &data, &flags));
*value = data;
}
void set_pu_control(const device &device, long property, int32_t *value) {
long data = *value;
check("IAMVideoProcAmp::Set", const_cast<uvc::device &>(device).am_video_proc_amp->Set(property, data, VideoProcAmp_Flags_Auto));
}
bool pu_control_query(
const device &device, Option option, pu_query query, int32_t *value) {
CHECK_NOTNULL(value);
const_cast<uvc::device &>(device).get_media_source();
switch (query) {
case PU_QUERY_SET:
set_pu_control(device, get_cid(option), value);
return true;
case PU_QUERY_GET:
get_pu_control(device, get_cid(option), value);
return true;
default:
LOG(ERROR) << "pu_control_query request code is unaccepted";
return false;
}
}
void get_extension_control_range(const device &device, const xu &xu, uint8_t selector, xu_query query, uint8_t *data)
{
CHECK_NOTNULL(data);
int offset = 0;
auto ks_control = const_cast<uvc::device &>(device).get_ks_control(xu);
/* get step, min and max values*/
KSP_NODE node;
memset(&node, 0, sizeof(KSP_NODE));
node.Property.Set = reinterpret_cast<const GUID &>(xu.id);
node.Property.Id = selector;
node.NodeId = xu.node;
switch (query) {
case XU_QUERY_MIN:
offset = 1;
node.Property.Flags = KSPROPERTY_TYPE_BASICSUPPORT | KSPROPERTY_TYPE_TOPOLOGY;
break;
case XU_QUERY_MAX:
offset = 2;
node.Property.Flags = KSPROPERTY_TYPE_BASICSUPPORT | KSPROPERTY_TYPE_TOPOLOGY;
break;
case XU_QUERY_DEF:
offset = 0;
node.Property.Flags = KSPROPERTY_TYPE_DEFAULTVALUES | KSPROPERTY_TYPE_TOPOLOGY;
break;
default:
LOG(ERROR) << "xu request code is unaccepted";
break;
}
KSPROPERTY_DESCRIPTION description;
unsigned long bytes_received = 0;
std::cout << "query" << std::endl;
check("IKsControl::KsProperty", ks_control->KsProperty(
(PKSPROPERTY)&node,
sizeof(node),
&description,
sizeof(KSPROPERTY_DESCRIPTION),
&bytes_received));
unsigned long size = description.DescriptionSize;
std::vector<BYTE> buffer((long)size);
check("IKsControl::KsProperty", ks_control->KsProperty(
(PKSPROPERTY)&node,
sizeof(node),
buffer.data(),
size,
&bytes_received));
if (bytes_received != size) { throw std::runtime_error("wrong data"); }
BYTE * pRangeValues = buffer.data() + sizeof(KSPROPERTY_MEMBERSHEADER) + sizeof(KSPROPERTY_DESCRIPTION);
* data = (uint8_t)*(pRangeValues + offset);
}
bool xu_control_query(
const device &device, const xu &xu, uint8_t selector, xu_query query,
uint16_t size, uint8_t *data) {
CHECK_NOTNULL(data);
int offset = 0;
int range_offset = sizeof(KSPROPERTY_MEMBERSHEADER) + sizeof(KSPROPERTY_DESCRIPTION);
auto ks_control = const_cast<uvc::device &>(device).get_ks_control(xu);
KSP_NODE node;
memset(&node, 0, sizeof(KSP_NODE));
node.Property.Set = reinterpret_cast<const GUID &>(xu.id);
node.Property.Id = selector;
node.NodeId = xu.node;
unsigned long bytes_received = 0;
std::cout << "selector: " << selector << std::endl;
switch (query) {
case XU_QUERY_SET:
std::cout << "XU_QUERY_SET" << std::endl;
node.Property.Flags = KSPROPERTY_TYPE_SET | KSPROPERTY_TYPE_TOPOLOGY;
break;
case XU_QUERY_GET:
std::cout << "XU_QUERY_GET" << std::endl;
node.Property.Flags = KSPROPERTY_TYPE_SET | KSPROPERTY_TYPE_TOPOLOGY;
break;
case XU_QUERY_MIN:
case XU_QUERY_MAX:
case XU_QUERY_DEF:
get_extension_control_range(device, xu, selector, query, data);
return true;
default:
LOG(ERROR) << "xu range query request code is unaccepted";
return false;
}
std::cout << "set & get" << std::endl;
check("IKsControl::KsProperty", ks_control->KsProperty((PKSPROPERTY)&node, sizeof(node), reinterpret_cast<void *>(data), size, &bytes_received));
if (bytes_received != size) { throw_error() << "wrong data"; }
*data = (int)*(data+offset);
return true;
}
void set_device_mode(device & device, int width, int height, int fourcc, int fps, video_channel_callback callback)
{
if(!device.mf_source_reader)
{
com_ptr<IMFAttributes> pAttributes;
check("MFCreateAttributes", MFCreateAttributes(&pAttributes, 1));
check("IMFAttributes::SetUnknown", pAttributes->SetUnknown(MF_SOURCE_READER_ASYNC_CALLBACK, static_cast<IUnknown *>(device.reader_callback)));
check("MFCreateSourceReaderFromMediaSource", MFCreateSourceReaderFromMediaSource(device.get_media_source(), pAttributes, &device.mf_source_reader));
}
if (fourcc_map.count(fourcc)) fourcc = fourcc_map.at(fourcc);
for (DWORD j = 0; ; j++)
{
com_ptr<IMFMediaType> media_type;
HRESULT hr = device.mf_source_reader->GetNativeMediaType((DWORD)MF_SOURCE_READER_FIRST_VIDEO_STREAM, j, &media_type);
if (hr == MF_E_NO_MORE_TYPES) break;
check("IMFSourceReader::GetNativeMediaType", hr);
UINT32 uvc_width, uvc_height, uvc_fps_num, uvc_fps_denom; GUID subtype;
check("MFGetAttributeSize", MFGetAttributeSize(media_type, MF_MT_FRAME_SIZE, &uvc_width, &uvc_height));
if(uvc_width != width || uvc_height != height) continue;
check("IMFMediaType::GetGUID", media_type->GetGUID(MF_MT_SUBTYPE, &subtype));
if(subtype.Data1 != fourcc) continue;
check("MFGetAttributeRatio", MFGetAttributeRatio(media_type, MF_MT_FRAME_RATE, &uvc_fps_num, &uvc_fps_denom));
if(uvc_fps_denom == 0) continue;
check("IMFSourceReader::SetCurrentMediaType", device.mf_source_reader->SetCurrentMediaType((DWORD)MF_SOURCE_READER_FIRST_VIDEO_STREAM, NULL, media_type));
device.callback = callback;
return;
}
throw_error() << "no matching media type for pixel format " << std::hex << fourcc;
}
void start_streaming(device & device, int num_transfer_bufs) { device.start_streaming(); }
void stop_streaming(device & device) { device.stop_streaming(); }
} // namespace uvc
MYNTEYE_END_NAMESPACE

View File

@ -23,9 +23,13 @@ typedef enum pu_query {
PU_QUERY_LAST
} pu_query;
struct guid { uint32_t data1; uint16_t data2, data3; uint8_t data4[8]; };
// Extension Unit
struct MYNTEYE_API xu {
uint8_t unit;
int node;
guid id;
};
typedef enum xu_query {