153 lines
6.3 KiB
C++
153 lines
6.3 KiB
C++
// Ceres Solver - A fast non-linear least squares minimizer
|
|
// Copyright 2015 Google Inc. All rights reserved.
|
|
// http://ceres-solver.org/
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
// * Neither the name of Google Inc. nor the names of its contributors may be
|
|
// used to endorse or promote products derived from this software without
|
|
// specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
|
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
// POSSIBILITY OF SUCH DAMAGE.
|
|
//
|
|
// Author: sameeragarwal@google.com (Sameer Agarwal)
|
|
//
|
|
// For generalized bi-partite Jacobian matrices that arise in
|
|
// Structure from Motion related problems, it is sometimes useful to
|
|
// have access to the two parts of the matrix as linear operators
|
|
// themselves. This class provides that functionality.
|
|
|
|
#ifndef CERES_INTERNAL_PARTITIONED_MATRIX_VIEW_H_
|
|
#define CERES_INTERNAL_PARTITIONED_MATRIX_VIEW_H_
|
|
|
|
#include <algorithm>
|
|
#include <cstring>
|
|
#include <vector>
|
|
|
|
#include "ceres/block_structure.h"
|
|
#include "ceres/internal/eigen.h"
|
|
#include "ceres/linear_solver.h"
|
|
#include "ceres/small_blas.h"
|
|
#include "glog/logging.h"
|
|
|
|
namespace ceres {
|
|
namespace internal {
|
|
|
|
// Given generalized bi-partite matrix A = [E F], with the same block
|
|
// structure as required by the Schur complement based solver, found
|
|
// in explicit_schur_complement_solver.h, provide access to the
|
|
// matrices E and F and their outer products E'E and F'F with
|
|
// themselves.
|
|
//
|
|
// Lack of BlockStructure object will result in a crash and if the
|
|
// block structure of the matrix does not satisfy the requirements of
|
|
// the Schur complement solver it will result in unpredictable and
|
|
// wrong output.
|
|
class PartitionedMatrixViewBase {
|
|
public:
|
|
virtual ~PartitionedMatrixViewBase() {}
|
|
|
|
// y += E'x
|
|
virtual void LeftMultiplyE(const double* x, double* y) const = 0;
|
|
|
|
// y += F'x
|
|
virtual void LeftMultiplyF(const double* x, double* y) const = 0;
|
|
|
|
// y += Ex
|
|
virtual void RightMultiplyE(const double* x, double* y) const = 0;
|
|
|
|
// y += Fx
|
|
virtual void RightMultiplyF(const double* x, double* y) const = 0;
|
|
|
|
// Create and return the block diagonal of the matrix E'E.
|
|
virtual BlockSparseMatrix* CreateBlockDiagonalEtE() const = 0;
|
|
|
|
// Create and return the block diagonal of the matrix F'F. Caller
|
|
// owns the result.
|
|
virtual BlockSparseMatrix* CreateBlockDiagonalFtF() const = 0;
|
|
|
|
// Compute the block diagonal of the matrix E'E and store it in
|
|
// block_diagonal. The matrix block_diagonal is expected to have a
|
|
// BlockStructure (preferably created using
|
|
// CreateBlockDiagonalMatrixEtE) which is has the same structure as
|
|
// the block diagonal of E'E.
|
|
virtual void UpdateBlockDiagonalEtE(
|
|
BlockSparseMatrix* block_diagonal) const = 0;
|
|
|
|
// Compute the block diagonal of the matrix F'F and store it in
|
|
// block_diagonal. The matrix block_diagonal is expected to have a
|
|
// BlockStructure (preferably created using
|
|
// CreateBlockDiagonalMatrixFtF) which is has the same structure as
|
|
// the block diagonal of F'F.
|
|
virtual void UpdateBlockDiagonalFtF(
|
|
BlockSparseMatrix* block_diagonal) const = 0;
|
|
|
|
virtual int num_col_blocks_e() const = 0;
|
|
virtual int num_col_blocks_f() const = 0;
|
|
virtual int num_cols_e() const = 0;
|
|
virtual int num_cols_f() const = 0;
|
|
virtual int num_rows() const = 0;
|
|
virtual int num_cols() const = 0;
|
|
|
|
static PartitionedMatrixViewBase* Create(const LinearSolver::Options& options,
|
|
const BlockSparseMatrix& matrix);
|
|
};
|
|
|
|
template <int kRowBlockSize = Eigen::Dynamic,
|
|
int kEBlockSize = Eigen::Dynamic,
|
|
int kFBlockSize = Eigen::Dynamic >
|
|
class PartitionedMatrixView : public PartitionedMatrixViewBase {
|
|
public:
|
|
// matrix = [E F], where the matrix E contains the first
|
|
// num_col_blocks_a column blocks.
|
|
PartitionedMatrixView(const BlockSparseMatrix& matrix, int num_col_blocks_e);
|
|
|
|
virtual ~PartitionedMatrixView();
|
|
virtual void LeftMultiplyE(const double* x, double* y) const;
|
|
virtual void LeftMultiplyF(const double* x, double* y) const;
|
|
virtual void RightMultiplyE(const double* x, double* y) const;
|
|
virtual void RightMultiplyF(const double* x, double* y) const;
|
|
virtual BlockSparseMatrix* CreateBlockDiagonalEtE() const;
|
|
virtual BlockSparseMatrix* CreateBlockDiagonalFtF() const;
|
|
virtual void UpdateBlockDiagonalEtE(BlockSparseMatrix* block_diagonal) const;
|
|
virtual void UpdateBlockDiagonalFtF(BlockSparseMatrix* block_diagonal) const;
|
|
virtual int num_col_blocks_e() const { return num_col_blocks_e_; }
|
|
virtual int num_col_blocks_f() const { return num_col_blocks_f_; }
|
|
virtual int num_cols_e() const { return num_cols_e_; }
|
|
virtual int num_cols_f() const { return num_cols_f_; }
|
|
virtual int num_rows() const { return matrix_.num_rows(); }
|
|
virtual int num_cols() const { return matrix_.num_cols(); }
|
|
|
|
private:
|
|
BlockSparseMatrix* CreateBlockDiagonalMatrixLayout(int start_col_block,
|
|
int end_col_block) const;
|
|
|
|
const BlockSparseMatrix& matrix_;
|
|
int num_row_blocks_e_;
|
|
int num_col_blocks_e_;
|
|
int num_col_blocks_f_;
|
|
int num_cols_e_;
|
|
int num_cols_f_;
|
|
};
|
|
|
|
} // namespace internal
|
|
} // namespace ceres
|
|
|
|
#endif // CERES_INTERNAL_PARTITIONED_MATRIX_VIEW_H_
|