- Implements GStreamer element that analyzes pixel columns - Drops frames when column mean deviates from rolling baseline - Configurable window size, column index, stride, and threshold - Includes design documentation and build script - Tested successfully with IDS uEye camera source
290 lines
7.7 KiB
Markdown
290 lines
7.7 KiB
Markdown
# Rolling Sum Filter - Design Document
|
|
|
|
## Overview
|
|
|
|
A GStreamer element that drops frames based on rolling mean analysis of a single column of pixels. Inspired by the detection algorithm in `cli.py`, simplified for real-time streaming.
|
|
|
|
## Element Name
|
|
|
|
**`rollingsum`** - Transform element that analyzes pixel values and selectively drops frames
|
|
|
|
## Purpose
|
|
|
|
Monitor a vertical column of pixels in video frames, calculate the rolling mean over a time window, and drop frames when the current frame's column mean deviates significantly from the rolling mean baseline.
|
|
|
|
## Architecture
|
|
|
|
### Base Class
|
|
- Inherits from `GstBaseTransform` (similar to [`select`](gst/select/gstselect.c))
|
|
- In-place transform (analysis only, no frame modification)
|
|
- Returns `GST_BASE_TRANSFORM_FLOW_DROPPED` to drop frames
|
|
- Returns `GST_FLOW_OK` to pass frames
|
|
|
|
### Element Structure
|
|
|
|
```c
|
|
struct _GstRollingSum
|
|
{
|
|
GstBaseTransform element;
|
|
|
|
/* Properties */
|
|
gint window_size; // Number of frames in rolling window (default: 1000)
|
|
gint column_index; // Which column to analyze (default: 1, second column)
|
|
gint stride; // Row sampling stride (default: 1, every row)
|
|
gdouble threshold; // Deviation threshold for dropping (default: 0.5)
|
|
|
|
/* State */
|
|
gdouble *ring_buffer; // Circular buffer of column means
|
|
gint ring_index; // Current position in ring buffer
|
|
gint frame_count; // Total frames processed
|
|
gdouble rolling_mean; // Current rolling mean
|
|
};
|
|
```
|
|
|
|
## Algorithm (Simplified from cli.py)
|
|
|
|
### Per Frame Processing
|
|
|
|
```
|
|
1. Extract column data:
|
|
- Select column at column_index
|
|
- Sample every stride rows
|
|
- Calculate mean of sampled pixels: frame_mean
|
|
|
|
2. Update ring buffer:
|
|
- Store frame_mean in ring_buffer[ring_index]
|
|
- Increment ring_index (wrap around)
|
|
|
|
3. Calculate rolling mean:
|
|
- Sum values in ring buffer (up to window_size or frame_count)
|
|
- Divide by actual window size
|
|
|
|
4. Calculate deviation:
|
|
- deviation = abs(frame_mean - rolling_mean)
|
|
|
|
5. Decision:
|
|
- If deviation > threshold: DROP frame
|
|
- Else: PASS frame
|
|
```
|
|
|
|
### Key Simplifications from cli.py
|
|
|
|
- **No EMA tracking**: Use simple rolling mean instead of exponential moving average
|
|
- **No variance tracking**: Use fixed threshold instead of dynamic variance-based detection
|
|
- **No recording logic**: Just drop/pass, no buffering for output segments
|
|
- **No patience mechanism**: Immediate decision per frame
|
|
|
|
## Properties
|
|
|
|
| Property | Type | Default | Range | Description |
|
|
|----------|------|---------|-------|-------------|
|
|
| `window-size` | int | 1000 | 1-100000 | Number of frames in rolling window |
|
|
| `column-index` | int | 1 | 0-width | Which vertical column to analyze |
|
|
| `stride` | int | 1 | 1-height | Row sampling stride (1=all rows) |
|
|
| `threshold` | double | 0.5 | 0.0-1.0 | Normalized deviation threshold for dropping |
|
|
|
|
## Data Structures
|
|
|
|
### Ring Buffer
|
|
- Array of doubles sized to `window_size`
|
|
- Stores column mean for each processed frame
|
|
- Circular wrapping via modulo: `ring_index % window_size`
|
|
|
|
### Frame Analysis
|
|
```
|
|
For column_index=1, stride=1, frame height=H:
|
|
- Extract pixels: frame[:, column_index]
|
|
- Sample: frame[::stride, column_index]
|
|
- Count: H / stride samples
|
|
- Mean: sum(samples) / count
|
|
```
|
|
|
|
## Implementation Files
|
|
|
|
### Directory Structure
|
|
```
|
|
gst/rollingsum/
|
|
├── CMakeLists.txt
|
|
├── gstrollingsum.c
|
|
└── gstrollingsum.h
|
|
```
|
|
|
|
### gstrollingsum.h
|
|
- Element type definitions
|
|
- Structure declarations
|
|
- Property enums
|
|
- Function prototypes
|
|
|
|
### gstrollingsum.c
|
|
- GObject methods (init, dispose, get/set properties)
|
|
- GstBaseTransform methods (transform_ip)
|
|
- Helper functions (extract_column_mean, update_rolling_mean)
|
|
- Plugin registration
|
|
|
|
### CMakeLists.txt
|
|
- Build configuration (copy from [`gst/select/CMakeLists.txt`](gst/select/CMakeLists.txt))
|
|
- Link GStreamer base and video libraries
|
|
|
|
## Video Format Support
|
|
|
|
### Initial Implementation
|
|
- **Primary target**: Grayscale (GRAY8, GRAY16)
|
|
- **Secondary**: Bayer formats (common in machine vision)
|
|
|
|
### Caps Filter
|
|
```c
|
|
static GstStaticPadTemplate sink_template =
|
|
GST_STATIC_PAD_TEMPLATE ("sink",
|
|
GST_PAD_SINK,
|
|
GST_PAD_ALWAYS,
|
|
GST_STATIC_CAPS (
|
|
"video/x-raw, format=(string){GRAY8,GRAY16_LE,GRAY16_BE}; "
|
|
"video/x-bayer, format=(string){bggr,grbg,gbrg,rggb}"
|
|
)
|
|
);
|
|
```
|
|
|
|
## Pipeline Usage Examples
|
|
|
|
### Basic Usage
|
|
```bash
|
|
gst-launch-1.0 idsueyesrc config-file=config.ini ! \
|
|
rollingsum window-size=1000 column-index=1 threshold=0.5 ! \
|
|
autovideosink
|
|
```
|
|
|
|
### Custom Configuration
|
|
```bash
|
|
gst-launch-1.0 idsueyesrc config-file=config.ini ! \
|
|
rollingsum window-size=5000 column-index=320 stride=2 threshold=0.3 ! \
|
|
queue ! \
|
|
autovideosink
|
|
```
|
|
|
|
### With Format Conversion
|
|
```bash
|
|
gst-launch-1.0 idsueyesrc ! \
|
|
videoconvert ! \
|
|
video/x-raw,format=GRAY8 ! \
|
|
rollingsum ! \
|
|
autovideosink
|
|
```
|
|
|
|
## Performance Considerations
|
|
|
|
### Memory Usage
|
|
- Ring buffer: `window_size * sizeof(double)` = ~8KB for default 1000 frames
|
|
- Minimal per-frame allocation
|
|
|
|
### CPU Usage
|
|
- Column extraction: O(height/stride)
|
|
- Rolling mean update: O(1) using incremental sum
|
|
- Very lightweight compared to full-frame processing
|
|
|
|
### Optimization Opportunities
|
|
1. **Incremental mean**: Track sum instead of recalculating
|
|
2. **SIMD**: Vectorize column summation
|
|
3. **Skip calculation**: Only recalc every N frames if baseline is stable
|
|
|
|
## Testing Strategy
|
|
|
|
### Unit Tests
|
|
- Ring buffer wrapping
|
|
- Mean calculation accuracy
|
|
- Threshold comparison logic
|
|
|
|
### Integration Tests
|
|
- Pipeline with videotestsrc
|
|
- Pipeline with idsueyesrc
|
|
- Frame drop verification
|
|
- Property changes during playback
|
|
|
|
### Test Cases
|
|
1. Static video (all frames similar) → all pass
|
|
2. Single bright frame → that frame drops
|
|
3. Gradual change → frames pass
|
|
4. Periodic pattern → pattern frames drop
|
|
|
|
## Future Enhancements
|
|
|
|
### Phase 2 (If Needed)
|
|
- Add EMA baseline tracking (like cli.py)
|
|
- Add variance-based thresholds
|
|
- Support multiple columns or regions
|
|
- Add metadata output (tag frames with deviation values)
|
|
- RGB format support (analyze specific channel)
|
|
|
|
### Phase 3 (Advanced)
|
|
- Full cli.py recording logic
|
|
- Buffer and output segments
|
|
- Integration with probe detection systems
|
|
|
|
## Integration with Existing Project
|
|
|
|
### Build System
|
|
Update [`gst/CMakeLists.txt`](gst/CMakeLists.txt):
|
|
```cmake
|
|
add_subdirectory (rollingsum)
|
|
```
|
|
|
|
### Documentation
|
|
Update [`README.md`](README.md):
|
|
- Add rollingsum to "Other elements" section
|
|
- Add pipeline example
|
|
|
|
## Mermaid Diagram: Data Flow
|
|
|
|
```mermaid
|
|
graph TD
|
|
A[Video Frame] --> B[Extract Column]
|
|
B --> C[Calculate Column Mean]
|
|
C --> D[Store in Ring Buffer]
|
|
D --> E[Update Rolling Mean]
|
|
E --> F{Deviation > Threshold?}
|
|
F -->|Yes| G[DROP Frame]
|
|
F -->|No| H[PASS Frame]
|
|
C --> E
|
|
|
|
style G fill:#ff6b6b
|
|
style H fill:#51cf66
|
|
```
|
|
|
|
## Mermaid Diagram: Ring Buffer Operation
|
|
|
|
```mermaid
|
|
graph LR
|
|
subgraph Ring Buffer
|
|
A[0] --> B[1]
|
|
B --> C[2]
|
|
C --> D[...]
|
|
D --> E[N-1]
|
|
E ---|wrap| A
|
|
end
|
|
|
|
F[New Frame Mean] --> G[ring_index]
|
|
G --> A
|
|
|
|
H[Rolling Mean] --> I[Sum all values]
|
|
I --> J[Divide by count]
|
|
|
|
style G fill:#ffd43b
|
|
```
|
|
|
|
## Implementation Checklist
|
|
|
|
- [ ] Create gst/rollingsum directory
|
|
- [ ] Implement gstrollingsum.h
|
|
- [ ] Implement gstrollingsum.c
|
|
- [ ] Create CMakeLists.txt
|
|
- [ ] Update gst/CMakeLists.txt
|
|
- [ ] Build and test basic functionality
|
|
- [ ] Test with idsueyesrc
|
|
- [ ] Update README.md
|
|
- [ ] Create feature branch
|
|
- [ ] Commit and document
|
|
|
|
## References
|
|
|
|
- Original algorithm: `cli.py` lines 64-79 (column extraction and mean comparison)
|
|
- Template element: [`gst/select/gstselect.c`](gst/select/gstselect.c)
|
|
- GStreamer base transform: [GstBaseTransform documentation](https://gstreamer.freedesktop.org/documentation/base/gstbasetransform.html) |