- Added UDP_CONTROL_PROTOCOL.md documenting the UDP control interface - Added launch-ids.py for IDS camera control - Added test_exposure_control.py for testing exposure settings - Added udp_backup.reg for UDP configuration backup - Added visualize_line_realtime.py for real-time visualization - Updated .gitignore and ROLLINGSUM_GUIDE.md - Removed ini/200fps-2456x4pix-cw.ini configuration file
613 lines
16 KiB
Markdown
613 lines
16 KiB
Markdown
# GStreamer Rolling Sum Plugin - Complete Documentation
|
|
|
|
## Table of Contents
|
|
- [Overview](#overview)
|
|
- [How It Works](#how-it-works)
|
|
- [Architecture & Design](#architecture--design)
|
|
- [Plugin Properties](#plugin-properties)
|
|
- [Basic Usage](#basic-usage)
|
|
- [Debugging](#debugging)
|
|
- [CSV Analysis](#csv-analysis)
|
|
- [Recommended Thresholds](#recommended-thresholds)
|
|
- [Troubleshooting](#troubleshooting)
|
|
- [Performance](#performance)
|
|
- [Integration Examples](#integration-examples)
|
|
- [Developer Guide](#developer-guide)
|
|
- [References](#references)
|
|
|
|
## Overview
|
|
|
|
The `rollingsum` plugin analyzes video frames in real-time by tracking the mean pixel intensity of a specific column across frames. It maintains a rolling window of these values and can drop frames that deviate significantly from the rolling mean, useful for detecting and filtering unstable or anomalous frames.
|
|
|
|
**Element Name:** `rollingsum` - Transform element that analyzes pixel values and selectively drops frames
|
|
|
|
**Purpose:** Monitor a vertical column of pixels in video frames, calculate the rolling mean over a time window, and drop frames when the current frame's column mean deviates significantly from the rolling mean baseline.
|
|
|
|
## How It Works
|
|
|
|
1. **Column Analysis**: Extracts mean pixel intensity from a specified vertical column
|
|
2. **Rolling Window**: Maintains a circular buffer of recent column means
|
|
3. **Deviation Detection**: Calculates how much each frame deviates from the rolling mean
|
|
4. **Frame Filtering**: Optionally drops frames exceeding the deviation threshold
|
|
5. **CSV Logging**: Records all frame statistics for analysis
|
|
|
|
### Data Flow
|
|
|
|
```mermaid
|
|
graph TD
|
|
A[Video Frame] --> B[Extract Column]
|
|
B --> C[Calculate Column Mean]
|
|
C --> D[Store in Ring Buffer]
|
|
D --> E[Update Rolling Mean]
|
|
E --> F{Deviation > Threshold?}
|
|
F -->|Yes| G[DROP Frame]
|
|
F -->|No| H[PASS Frame]
|
|
C --> E
|
|
|
|
style G fill:#ff6b6b
|
|
style H fill:#51cf66
|
|
```
|
|
|
|
### Ring Buffer Operation
|
|
|
|
```mermaid
|
|
graph LR
|
|
subgraph Ring Buffer
|
|
A[0] --> B[1]
|
|
B --> C[2]
|
|
C --> D[...]
|
|
D --> E[N-1]
|
|
E ---|wrap| A
|
|
end
|
|
|
|
F[New Frame Mean] --> G[ring_index]
|
|
G --> A
|
|
|
|
H[Rolling Mean] --> I[Sum all values]
|
|
I --> J[Divide by count]
|
|
|
|
style G fill:#ffd43b
|
|
```
|
|
|
|
## Architecture & Design
|
|
|
|
### Base Class
|
|
- Inherits from `GstBaseTransform` (similar to [`select`](gst/select/gstselect.c))
|
|
- In-place transform (analysis only, no frame modification)
|
|
- Returns `GST_BASE_TRANSFORM_FLOW_DROPPED` to drop frames
|
|
- Returns `GST_FLOW_OK` to pass frames
|
|
|
|
### Element Structure
|
|
|
|
```c
|
|
struct _GstRollingSum
|
|
{
|
|
GstBaseTransform element;
|
|
|
|
/* Properties */
|
|
gint window_size; // Number of frames in rolling window (default: 1000)
|
|
gint column_index; // Which column to analyze (default: 1, second column)
|
|
gint stride; // Row sampling stride (default: 1, every row)
|
|
gdouble threshold; // Deviation threshold for dropping (default: 0.5)
|
|
gchar *csv_file; // CSV output file path (default: NULL)
|
|
|
|
/* State */
|
|
gdouble *ring_buffer; // Circular buffer of column means
|
|
gint ring_index; // Current position in ring buffer
|
|
gint frame_count; // Total frames processed
|
|
gdouble rolling_mean; // Current rolling mean
|
|
FILE *csv_fp; // CSV file pointer
|
|
};
|
|
```
|
|
|
|
### Algorithm (Simplified from wissotsky's cli.py)
|
|
|
|
**Per Frame Processing:**
|
|
|
|
1. **Extract column data:**
|
|
- Select column at column_index
|
|
- Sample every stride rows
|
|
- Calculate mean of sampled pixels: frame_mean
|
|
|
|
2. **Update ring buffer:**
|
|
- Store frame_mean in ring_buffer[ring_index]
|
|
- Increment ring_index (wrap around)
|
|
|
|
3. **Calculate rolling mean:**
|
|
- Sum values in ring buffer (up to window_size or frame_count)
|
|
- Divide by actual window size
|
|
|
|
4. **Calculate deviation:**
|
|
- deviation = abs(frame_mean - rolling_mean)
|
|
- normalized_deviation = deviation / 255.0 (for 8-bit video)
|
|
|
|
5. **Decision:**
|
|
- If normalized_deviation > threshold: DROP frame
|
|
- Else: PASS frame
|
|
|
|
**Key Simplifications from cli.py:**
|
|
- **No EMA tracking**: Use simple rolling mean instead of exponential moving average
|
|
- **No variance tracking**: Use fixed threshold instead of dynamic variance-based detection
|
|
- **No recording logic**: Just drop/pass, no buffering for output segments
|
|
- **No patience mechanism**: Immediate decision per frame
|
|
|
|
### Video Format Support
|
|
|
|
**Initial Implementation:**
|
|
- **Primary target**: Grayscale (GRAY8, GRAY16)
|
|
- **Secondary**: Bayer formats (common in machine vision)
|
|
|
|
**Caps Filter:**
|
|
```c
|
|
static GstStaticPadTemplate sink_template =
|
|
GST_STATIC_PAD_TEMPLATE ("sink",
|
|
GST_PAD_SINK,
|
|
GST_PAD_ALWAYS,
|
|
GST_STATIC_CAPS (
|
|
"video/x-raw, format=(string){GRAY8,GRAY16_LE,GRAY16_BE}; "
|
|
"video/x-bayer, format=(string){bggr,grbg,gbrg,rggb}"
|
|
)
|
|
);
|
|
```
|
|
|
|
## Plugin Properties
|
|
|
|
| Property | Type | Default | Range | Description |
|
|
|----------|------|---------|-------|-------------|
|
|
| `window-size` | int | 1000 | 1-100000 | Number of frames in rolling window |
|
|
| `column-index` | int | 1 | 0-width | Which vertical column to analyze (0-based) |
|
|
| `stride` | int | 1 | 1-height | Row sampling stride (1 = every row) |
|
|
| `threshold` | double | 0.5 | 0.0-1.0 | Normalized deviation threshold for dropping frames |
|
|
| `csv-file` | string | NULL | - | Path to CSV file for logging (NULL = no logging) |
|
|
|
|
### Understanding Normalized Deviation
|
|
|
|
- **Range**: 0.0 to 1.0
|
|
- **Calculation**: `absolute_deviation / 255.0` (for 8-bit video)
|
|
- **Meaning**: Fraction of the full pixel range
|
|
- `0.001` = deviation of ~0.255 pixel values
|
|
- `0.01` = deviation of ~2.55 pixel values
|
|
- `0.1` = deviation of ~25.5 pixel values
|
|
|
|
## Basic Usage
|
|
|
|
### Simple Pipeline
|
|
|
|
```powershell
|
|
gst-launch-1.0 idsueyesrc config-file=config.ini ! `
|
|
videoconvert ! `
|
|
video/x-raw,format=GRAY8 ! `
|
|
rollingsum window-size=1000 column-index=1 threshold=0.0002 ! `
|
|
autovideosink
|
|
```
|
|
|
|
### With CSV Logging
|
|
|
|
```powershell
|
|
gst-launch-1.0 idsueyesrc config-file=config.ini exposure=0.5 ! `
|
|
videoconvert ! `
|
|
video/x-raw,format=GRAY8 ! `
|
|
rollingsum window-size=1000 column-index=1 threshold=0.0002 csv-file=output.csv ! `
|
|
fakesink
|
|
```
|
|
|
|
### Custom Configuration
|
|
|
|
```powershell
|
|
gst-launch-1.0 idsueyesrc config-file=config.ini ! `
|
|
rollingsum window-size=5000 column-index=320 stride=2 threshold=0.3 ! `
|
|
queue ! `
|
|
autovideosink
|
|
```
|
|
|
|
### With Format Conversion
|
|
|
|
```powershell
|
|
gst-launch-1.0 idsueyesrc ! `
|
|
videoconvert ! `
|
|
video/x-raw,format=GRAY8 ! `
|
|
rollingsum ! `
|
|
autovideosink
|
|
```
|
|
|
|
## Debugging
|
|
|
|
### Enable Debug Output
|
|
|
|
Use the `GST_DEBUG` environment variable to see detailed plugin operation:
|
|
|
|
#### Windows PowerShell
|
|
|
|
```powershell
|
|
$env:GST_DEBUG="rollingsum:5"; gst-launch-1.0 [pipeline...]
|
|
```
|
|
|
|
#### Windows CMD
|
|
|
|
```cmd
|
|
set GST_DEBUG=rollingsum:5 && gst-launch-1.0 [pipeline...]
|
|
```
|
|
|
|
#### Linux/Mac
|
|
|
|
```bash
|
|
GST_DEBUG=rollingsum:5 gst-launch-1.0 [pipeline...]
|
|
```
|
|
|
|
### Debug Levels
|
|
|
|
| Level | Output |
|
|
|-------|--------|
|
|
| `rollingsum:1` | Errors only |
|
|
| `rollingsum:2` | Warnings |
|
|
| `rollingsum:3` | Info messages (file open/close) |
|
|
| `rollingsum:4` | Debug (caps negotiation) |
|
|
| `rollingsum:5` | Log (all frame processing) |
|
|
|
|
### Example Debug Output
|
|
|
|
```
|
|
0:00:04.029432200 DEBUG rollingsum gstrollingsum.c:436: Extracted column mean: 10.07
|
|
0:00:04.032257100 DEBUG rollingsum gstrollingsum.c:466: Frame 1: mean=10.07, rolling_mean=10.07, deviation=0.00 (normalized=0.0000)
|
|
```
|
|
|
|
**Key Fields:**
|
|
- `Frame N`: Frame number
|
|
- `mean`: Current frame's column mean
|
|
- `rolling_mean`: Average of last N frames (window-size)
|
|
- `deviation`: Absolute difference
|
|
- `normalized`: Deviation as fraction of 255
|
|
|
|
### Common Debug Scenarios
|
|
|
|
#### 1. Verify Plugin Loaded
|
|
|
|
```powershell
|
|
gst-inspect-1.0 rollingsum
|
|
```
|
|
|
|
Should show plugin details. If not found, check `GST_PLUGIN_PATH`.
|
|
|
|
#### 2. Check CSV File Creation
|
|
|
|
Look for this in debug output:
|
|
```
|
|
INFO rollingsum: Opened CSV file: output.csv
|
|
```
|
|
|
|
#### 3. Monitor Frame Drops
|
|
|
|
Look for:
|
|
```
|
|
DEBUG rollingsum: Dropping frame 42: deviation 0.0005 > threshold 0.0002
|
|
```
|
|
|
|
#### 4. Verify Caps Negotiation
|
|
|
|
```
|
|
DEBUG rollingsum: set_caps
|
|
DEBUG rollingsum: Video format: GRAY8, 1224x1026
|
|
```
|
|
|
|
## CSV Analysis
|
|
|
|
### CSV Format
|
|
|
|
The output CSV contains:
|
|
|
|
```csv
|
|
frame,column_mean,rolling_mean,deviation,normalized_deviation,dropped
|
|
1,10.071150,10.071150,0.000000,0.000000,0
|
|
2,10.059454,10.065302,0.005848,0.000023,0
|
|
...
|
|
```
|
|
|
|
### Analyze Results
|
|
|
|
Use the included analysis script:
|
|
|
|
```powershell
|
|
uv run scripts/analyze_sma.py output.csv
|
|
```
|
|
|
|
**Output includes:**
|
|
- Statistical summary (min/max/mean/std)
|
|
- Threshold recommendations based on percentiles
|
|
- Standard deviation-based suggestions
|
|
- Visualization plots saved to `results/debug/`
|
|
- Archived CSV with timestamp in `results/debug/`
|
|
|
|
**Output files are automatically organized:**
|
|
- `results/debug/output_YYYYMMDD_HHMMSS.csv` - Archived CSV
|
|
- `results/debug/output_analysis_YYYYMMDD_HHMMSS.png` - Analysis plots
|
|
|
|
The `results/` directory is gitignored to keep your repository clean.
|
|
|
|
### Interpreting Results
|
|
|
|
The analysis provides threshold recommendations:
|
|
|
|
| Percentile | Description | Use Case |
|
|
|------------|-------------|----------|
|
|
| 99th | Drops top 1% | Very conservative, catch only extreme outliers |
|
|
| 95th | Drops top 5% | Conservative, good for quality control |
|
|
| 90th | Drops top 10% | Balanced, moderate filtering |
|
|
| 75th | Drops top 25% | Aggressive, maximum quality |
|
|
|
|
## Recommended Thresholds
|
|
|
|
Based on analysis of stable camera footage:
|
|
|
|
### For General Use
|
|
|
|
```powershell
|
|
# Conservative (1-2% frame drop)
|
|
threshold=0.0003
|
|
|
|
# Moderate (5-10% frame drop)
|
|
threshold=0.0002
|
|
|
|
# Aggressive (20-25% frame drop)
|
|
threshold=0.0001
|
|
```
|
|
|
|
### For Specific Scenarios
|
|
|
|
**High-speed acquisition** (minimal processing):
|
|
```powershell
|
|
window-size=100 threshold=0.0005
|
|
```
|
|
|
|
**Quality-focused** (stable scenes):
|
|
```powershell
|
|
window-size=1000 threshold=0.0001
|
|
```
|
|
|
|
**Real-time monitoring** (fast response):
|
|
```powershell
|
|
window-size=50 threshold=0.0002
|
|
```
|
|
|
|
## Troubleshooting
|
|
|
|
### No frames being dropped (threshold too high)
|
|
|
|
**Symptom**: `dropped` column always 0 in CSV
|
|
|
|
**Solution**:
|
|
1. Run with CSV logging
|
|
2. Analyze with `uv run scripts/analyze_sma.py output.csv`
|
|
3. Use recommended threshold from 90th-99th percentile
|
|
|
|
### Too many frames dropped (threshold too low)
|
|
|
|
**Symptom**: Most frames have `dropped=1`, choppy video
|
|
|
|
**Solution**:
|
|
1. Increase threshold (try doubling current value)
|
|
2. Check if column_index is appropriate
|
|
3. Verify video is stable (not shaking/moving)
|
|
|
|
### CSV file not created
|
|
|
|
**Check**:
|
|
1. File path is writable
|
|
2. Look for "Opened CSV file" in debug output (`GST_DEBUG=rollingsum:3`)
|
|
3. Verify csv-file property is set correctly
|
|
|
|
### Column index out of range
|
|
|
|
**Symptom**:
|
|
```
|
|
WARNING rollingsum: Column index 1000 >= width 1224, using column 0
|
|
```
|
|
|
|
**Solution**: Set `column-index` to value < video width
|
|
|
|
### Inconsistent results
|
|
|
|
**Possible causes**:
|
|
1. Window size too small (< 50 frames)
|
|
2. Sampling moving/dynamic content
|
|
3. Column contains edge/artifact data
|
|
|
|
**Solutions**:
|
|
- Increase `window-size` to 500-1000
|
|
- Choose different `column-index` (avoid edges)
|
|
- Use `stride=2` or higher for faster processing
|
|
|
|
## Performance
|
|
|
|
### Performance Tips
|
|
|
|
1. **Larger window = more stable** but slower to adapt to scene changes
|
|
2. **Stride > 1** reduces computation but less accurate column mean
|
|
3. **CSV logging** has minimal performance impact
|
|
4. **Debug level 5** can produce massive logs, use only when needed
|
|
|
|
### Memory Usage
|
|
|
|
- Ring buffer: `window_size * sizeof(double)` = ~8KB for default 1000 frames
|
|
- Minimal per-frame allocation
|
|
|
|
### CPU Usage
|
|
|
|
- Column extraction: O(height/stride)
|
|
- Rolling mean update: O(1) using incremental sum
|
|
- Very lightweight compared to full-frame processing
|
|
|
|
### Optimization Opportunities
|
|
|
|
1. **Incremental mean**: Track sum instead of recalculating
|
|
2. **SIMD**: Vectorize column summation
|
|
3. **Skip calculation**: Only recalc every N frames if baseline is stable
|
|
|
|
## Integration Examples
|
|
|
|
### Python Script Control
|
|
|
|
```python
|
|
import subprocess
|
|
|
|
# Run pipeline with CSV logging
|
|
subprocess.run([
|
|
'gst-launch-1.0',
|
|
'idsueyesrc', 'config-file=config.ini',
|
|
'!', 'videoconvert',
|
|
'!', 'video/x-raw,format=GRAY8',
|
|
'!', 'rollingsum',
|
|
'window-size=1000',
|
|
'column-index=1',
|
|
'threshold=0.0002',
|
|
'csv-file=output.csv',
|
|
'!', 'fakesink'
|
|
])
|
|
|
|
# Analyze results
|
|
subprocess.run(['uv', 'run', 'scripts/analyze_sma.py', 'output.csv'])
|
|
```
|
|
|
|
### Adaptive Threshold
|
|
|
|
Use analysis results to set optimal threshold for next run:
|
|
|
|
```python
|
|
import pandas as pd
|
|
|
|
# Analyze previous run
|
|
df = pd.read_csv('output.csv')
|
|
recommended_threshold = df['normalized_deviation'].quantile(0.95)
|
|
|
|
print(f"Recommended threshold: {recommended_threshold:.6f}")
|
|
```
|
|
|
|
## Developer Guide
|
|
|
|
### Implementation Files
|
|
|
|
**Directory Structure:**
|
|
```
|
|
gst/rollingsum/
|
|
├── CMakeLists.txt
|
|
├── gstrollingsum.c
|
|
└── gstrollingsum.h
|
|
```
|
|
|
|
**gstrollingsum.h:**
|
|
- Element type definitions
|
|
- Structure declarations
|
|
- Property enums
|
|
- Function prototypes
|
|
|
|
**gstrollingsum.c:**
|
|
- GObject methods (init, dispose, get/set properties)
|
|
- GstBaseTransform methods (transform_ip)
|
|
- Helper functions (extract_column_mean, update_rolling_mean)
|
|
- Plugin registration
|
|
|
|
**CMakeLists.txt:**
|
|
- Build configuration (copy from [`gst/select/CMakeLists.txt`](gst/select/CMakeLists.txt))
|
|
- Link GStreamer base and video libraries
|
|
|
|
### Adding New Features
|
|
|
|
Key files:
|
|
- [`gst/rollingsum/gstrollingsum.c`](gst/rollingsum/gstrollingsum.c) - Main implementation
|
|
- [`gst/rollingsum/gstrollingsum.h`](gst/rollingsum/gstrollingsum.h) - Header/structures
|
|
- [`gst/rollingsum/CMakeLists.txt`](gst/rollingsum/CMakeLists.txt) - Build config
|
|
|
|
### Rebuild After Changes
|
|
|
|
```powershell
|
|
.\build.ps1 # Windows
|
|
```
|
|
|
|
```bash
|
|
./build.sh # Linux
|
|
```
|
|
|
|
### Testing
|
|
|
|
```powershell
|
|
# Quick test
|
|
gst-inspect-1.0 rollingsum
|
|
|
|
# Full pipeline test with debug
|
|
$env:GST_DEBUG="rollingsum:5"
|
|
gst-launch-1.0 videotestsrc ! rollingsum ! fakesink
|
|
```
|
|
|
|
### Testing Strategy
|
|
|
|
**Unit Tests:**
|
|
- Ring buffer wrapping
|
|
- Mean calculation accuracy
|
|
- Threshold comparison logic
|
|
|
|
**Integration Tests:**
|
|
- Pipeline with videotestsrc
|
|
- Pipeline with idsueyesrc
|
|
- Frame drop verification
|
|
- Property changes during playback
|
|
|
|
**Test Cases:**
|
|
1. Static video (all frames similar) → all pass
|
|
2. Single bright frame → that frame drops
|
|
3. Gradual change → frames pass
|
|
4. Periodic pattern → pattern frames drop
|
|
|
|
### Integration with Existing Project
|
|
|
|
**Build System:**
|
|
Update [`gst/CMakeLists.txt`](gst/CMakeLists.txt):
|
|
```cmake
|
|
add_subdirectory (rollingsum)
|
|
```
|
|
|
|
**Documentation:**
|
|
Update [`README.md`](README.md):
|
|
- Add rollingsum to "Other elements" section
|
|
- Add pipeline example
|
|
|
|
### Future Enhancements
|
|
|
|
**Phase 2 (If Needed):**
|
|
- Add EMA baseline tracking (like cli.py)
|
|
- Add variance-based thresholds
|
|
- Support multiple columns or regions
|
|
- Add metadata output (tag frames with deviation values)
|
|
- RGB format support (analyze specific channel)
|
|
|
|
**Phase 3 (Advanced):**
|
|
- Full cli.py recording logic
|
|
- Buffer and output segments
|
|
- Integration with probe detection systems
|
|
|
|
### Implementation Checklist
|
|
|
|
- [x] Create gst/rollingsum directory
|
|
- [x] Implement gstrollingsum.h
|
|
- [x] Implement gstrollingsum.c
|
|
- [x] Create CMakeLists.txt
|
|
- [x] Update gst/CMakeLists.txt
|
|
- [x] Build and test basic functionality
|
|
- [x] Test with idsueyesrc
|
|
- [x] Update README.md
|
|
- [x] Create feature branch
|
|
- [x] Commit and document
|
|
|
|
## References
|
|
|
|
- Original algorithm: `cli.py` lines 64-79 (column extraction and mean comparison)
|
|
- Template element: [`gst/select/gstselect.c`](gst/select/gstselect.c)
|
|
- GStreamer base transform: [GstBaseTransform documentation](https://gstreamer.freedesktop.org/documentation/base/gstbasetransform.html)
|
|
- [scripts/analyze_sma.py](scripts/analyze_sma.py) - Analysis tool
|
|
- GStreamer documentation: https://gstreamer.freedesktop.org/documentation/
|
|
|
|
## Support
|
|
|
|
For issues or questions:
|
|
1. Enable debug output (`$env:GST_DEBUG="rollingsum:5"` in PowerShell)
|
|
2. Generate CSV log and analyze
|
|
3. Check this guide's troubleshooting section
|
|
4. Review debug output for errors/warnings |